
Research Reproducibility Paper: Learning Neural
Networks for Multi-label Medical Image Retrieval

Using Hamming Distance Fabricated with
Jaccard Similarity Coefficient

Asim Manna[0000−0001−7617−9762] and Debdoot Sheet[0000−0001−9046−149X]

Indian Institute of Technology Kharagpur, 721302, West Bengal, India
{asimmanna17@kgpian,debdoot@ee}.iitkgp.ac.in

Abstract. This is the research reproducibility paper for the ICPR
2024 paper "Learning Neural Networks for Multi-label Medical Image
Retrieval Using Hamming Distance Fabricated with Jaccard Similarity
Coefficient." This work provides an overview of the problem, highlighting
the motivation behind multi-label image retrieval in the medical domain.
It delves into the algorithmic framework, offering a detailed explanation
of the proposed solution, including illustrative examples. Additionally,
we outline the implementation guidelines for replicating the approach.
A thorough experimental evaluation emphasizes the employed loss
functions, parameter analysis, and an ablation study. Furthermore, the
limitations of the method are discussed in the last.

Keywords: Content-based medical image retrieval · Deep neural
hashing network · Jaccard coefficient · Hamming distance · Pairwise
similarity

1 Introduction

In multi-label medical imaging, a pair of images may exhibit comorbid
pathologies as well as distinct pathologies [2,7,3]. Therefore, the Hamming
distance (HD) [4,6,5] between the generated hash codes of a multi-label image
pair should account for the proportion of shared labels relative to the total
possible labels. Our approach generates hash codes for multi-label medical
image retrieval by integrating both HD and the Jaccard Similarity Coefficient
(JSC) [1]. In Section 2, the main objective is mathematically defined. The
key goals of the proposed method are: (i) to ensure that the Hamming
distance (HD) between hash codes accurately reflects the number of matching
pathologies, thus improving the precision of representation and retrieval, and
(ii) to generate distinctive features for different combinations of pathologies
within images. To achieve these objectives during training, we utilize two
loss functions: adaptive Hamming distance loss (AHDL) and pairwise multi-
label classification loss (PMCL). Section 3 outlines the entire learning process
using these loss functions, including examples and the corresponding PyTorch

2 A. Manna et al.

code for the proposed AHDL. Our source code is available at Github 1. We
address reproducibility from two perspectives: method reproducibility and
results reproducibility. Method reproducibility refers to the ability to replicate
the proposed approach using the provided implementation details, ensuring
that others can independently verify the findings with the same approach and
dataset. Results reproducibility, in contrast, emphasizes the consistency of
outcomes, ensuring that applying the described method yields the same results
as reported in the main paper. Both aspects are discussed in detail in Section
5. The two associated scale parameters, λ1 and λ2, correspond to the two loss
functions. In Section 6, we examine the influence of the method’s parameters
and the impact of each individual loss. Finally, we present the limitations of
this work in Section 7, followed by the conclusion in Section 8.

2 Objective

Consider a training set of images represented as XT = {xT
1 ,x

T
2 , . . . ,x

T
i , . . . ,x

T
U1
}.

yT
i ∈ {0, 1}L represents the label set of image xT

i ∈ RM×N , where L denotes
the number of possible labels in the dataset. Consider a non-linear hash function
F : RM×N 7→ {−1, 1}K such that each xT

i ∈ RM×N is an image to be hashed
into a K-length binary hash code bT

i ∈ {−1, 1}K .
Let, the number of all possible labels and shared labels between an image

pair xT
i ,x

T
j are denoted as n(1)

ij (= |yT
i ∪yT

j | ≠ 0), n
(2)
ij (= |yT

i ∩yT
j |) respectively.

Our aims to learn F (·) following a supervised learning approach such that

dH(bT
i ,b

T
j) ≤ dH(bT

i ,b
T
k) if and only if

n
(2)
ij

n
(1)
ij

≥ n
(2)
ik

n
(1)
ik

, where bT
i = F (xT

i) and

dH(·) represents the HD between two hash codes of length K.
n
(2)
ij

n
(1)
ij

denotes the

JSC between the label sets. The idea is that if the number of common labels
between a pair of images is more, then the HD between a pair of generated hash
codes should be less.

3 Method

This section discusses the method to achieve the above objective, with supporting
examples. The pseudo code for the overall training pipeline to learn the hash
code from images is presented Algorithm 1, respectively. An example of how to
compute the ground truth HD using the given JSC between an image pair label
set is provided in Table 1. Finally, the PyTorch code for AHDL is presented in
Code 1.1.

1 https://github.com/asimmanna17/RRPR2024

https://github.com/asimmanna17/RRPR2024

JaccHash 3

Algorithm 1: The pseudo code for the overall training pipeline of our
method to learn the hash code from images
Input: Train image pair (xT

i ,x
T
j), label set pair (yT

i ,y
T
j), and Train set

XT, scale parameters λ1 and λ2

Output: Binary hash code (bT
i ,b

T
j)

1 Initialize: Model nete(·), netc(·), fch(·), and AHDL J1 = 0, PMCL
J2 = 0,#epochs = T

2 for each epoch=1:T do
3 for (xT

i ,x
T
j) ∈ XT ×XT do

4 zi, zj ← nete(x
T
i), nete(x

T
j);

5 ŷT
i , ŷ

T
j ← netc(zj), netc(zj); /* Predicted labels */

6 hi,hj ← Tanh(fch(zi)), Tanh(fch(zj)) ; /* Continuous hash
codes */

7 dH((hi,hj)← K
2 (1− cos(hi,hj)) ; /* Predicted HD */

8 n
(1)
ij ← |yT

i ∪ yT
j |; /* Total possible labels */

9 n
(2)
ij ← |yT

i ∩ yT
j |; /* Shared labels */

10 L
(n

(1)
ij)

HD (hi,hj)←
[
K,

⌊
(n

(1)
ij −1)K

n
(1)
ij

⌋
,

⌊
(n

(1)
ij −2)K

n
(1)
ij

⌋
, . . . , 0

]
;

/* Descending order list depends on the value of n
(1)
ij

*/

11 D
(n

(1)
ij ,n

(2)
ij)

H (hi,hj)← L
(n

(1)
ij)

HD (hi,hj)[n
(2)
ij] ; /* Groundthruth HD

depends on the value of n
(1)
ij , n

(2)
ij */

12 J1 ← J1 + log

(
cosh

(
D

(n
(1)
ij

,n
(2)
ij

)

H (hi,hj)−dH(hi,hj)

K

))
; /* AHDL

*/
13 J2 ←

J2+BCEWithLogitsLoss(ŷT
i ,y

T
i)+BCEWithLogitsLoss(ŷT

j ,y
T
j);

/* PMCL */
14 end
15 J = λ1J1 + λ2J2;
16 Update the weights of nete(·), netc(·), fch(·) by minimizing J ;
17 end
18 bT

i ,b
T
j = sign(hi), sign(hj)

4 A. Manna et al.

1 # Code for Adaptive Hamming distance loss
2 import torch
3 import torch.nn.functional as F
4 hash_code_length = 16
5 numClasses = 13
6 y_i = torch.tensor ([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0.,

0., 1.]])
7 y_j = torch.tensor ([[0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0.,

0., 1.]])
8 sum_label = y_i +y_j
9 union_label = (sum_label >= 1).sum(dim=1, keepdim=False) #n^(1)

10 intersection_label = (sum_label >= 2).sum(dim=1, keepdim=False)#n
^(2)

11 l_hd = []
12 for i in range(numClasses +1): # Loop from i=0 to i=13
13 if i==0:
14 l_hd.append ([hash_code_length])
15 else:
16 sublist = sorted ([int(j * hash_code_length / i) for j in

range(i + 1)], reverse=True)
17 l_hd.append(sublist)
18 g_distH = l_hd[union_label][intersection_label]
19 h_i = 2 * torch.rand(1, hash_code_length) - 1
20 h_j = 2 * torch.rand(1, hash_code_length) - 1
21 cos = F.cosine_similarity(h_i , h_j , dim=1, eps=1e-6)
22 cos_distH = F.relu((1-cos)*hash_code_length /2)
23 adaptive_HD_dist_loss = (torch.div(cos_distH -g_distH ,

hash_code_length)).cosh().log().sum()

Listing 1.1: Example of a PyTorch code for AHDL for an image pair along with their
label sets. Hash pairs and label pairs have been selected randomly here.

Table 1: An example of computing groudthruth HD for L = 4 and K = 16.

yT
i yT

j n
(1)
ij n

(2)
ij L

(n
(1)
ij)

HD (hi,hj) D
(n

(1)
ij ,n

(2)
ij)

H (hi,hj)

{1, 0, 1, 1} {0, 1, 0, 0}

4

0

[16, 12, 8, 4, 0]

16

{1, 1, 1, 1} {1, 0, 0, 0} 1 12

{1, 1, 1, 1} {1, 1, 0, 0} 2 8

{1, 1, 1, 1} {1, 1, 1, 0} 3 4

{1, 1, 1, 1} {1, 1, 1, 1} 4 0

{1, 1, 0, 0} {0, 0, 1, 0}

3

0

[16, 10, 5, 0]

16

{1, 1, 1, 0} {1, 0, 0, 0} 1 10

{1, 1, 1, 0} {1, 1, 0, 0} 2 5

{1, 1, 1, 0} {1, 1, 1, 0} 3 0

{1, 0, 0, 0} {0, 1, 0, 0}

2

0

[16, 8, 0]

16

{1, 1, 0, 0} {1, 0, 0, 0} 1 8

{1, 1, 0, 0} {1, 1, 0, 0} 2 0

{1, 0, 0, 0} {1, 0, 0, 0} 1 1 [16, 0] 0

JaccHash 5

4 Used Database

The dataset is sourced from the publicly available NIH Chest X-ray database
2, which contains 112,120 frontal-view X-ray images from 30,805 unique
patients [8]. Each image is labeled with one or more of 14 common thoracic
pathologies identified in the associated radiological reports. From this dataset, we
selected 51,480 images representing the 13 most frequent pathologies, including
Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema,
Fibrosis, Effusion, Pneumonia, Pleural thickening, Cardiomegaly, Nodule, and
Mass. These images are organized into three distinct sets: a training set with
38,610 images, a gallery set with 10,296 images, and a query set with 2,574
images. All images are stored in ‘.npy‘ format. The training set is used during
training, while the gallery and query sets are used during inference. The dataset
is available at Mendeley 3. After downloading and extracting the ’Dataset.zip’
file, three image subfolders are provided: ’train’, ’gallery’, and ’query’.

5 Implement Guidelines

In this section, we provide a detailed implementation guide for our algorithm,
outlining the steps for end-to-end training to generate hash codes from images
and measure retrieval performance. The experiments are conducted on a server
equipped with 2× Intel Xeon 4110 CPUs, 12 × 8 GB DDR4 ECC Reg. RAM,
2× 4 TB HDD, 4× Nvidia GTX 1080Ti GPUs, each with 11 GB DDR5 RAM,
and Ubuntu 20.04 LTS operating system. The algorithms are implemented using
Python 3.9 with PyTorch 1.10 and CUDA 11.2. The source code is available at:
https://github.com/asimmanna17/RRPR2024. It can be used for two purposes:
Method reproducibility and result reproducibility.

5.1 Method reproducibility

Method reproducibility refers to the ability to replicate the proposed approach
based on the provided implementation details. In this case, the algorithm’s code
is demonstrated using a small subset of the dataset found in the ‘./Dataset ‘
directory. Anyone can replicate the code with different datasets, enabling
independent verification of the results using the same method. Furthermore,
ensure that the ‘./Dataset ‘ directory contains three subfolders.

5.2 Result reproducibility

Results reproducibility focuses on the consistency of outcomes, ensuring that
the application of the described method yields the same results as reported
in the main paper. To reproduce the results shown in Table 2 and Table 3
2 https://www.kaggle.com/datasets/nih-chest-xrays/data
3 https://data.mendeley.com/datasets/c5x35tmj5v/1

https://github.com/asimmanna17/RRPR2024
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://data.mendeley.com/datasets/c5x35tmj5v/1

6 A. Manna et al.

(main paper), the full dataset provided above must be used and saved in the
appropriate directory, i.e., ‘./Dataset‘. For training, the ‘train.py ‘ script should
be executed using the images from ‘train‘ folder. However, the training process
can be skipped since the pre-trained model has already been uploaded at here
4. Save the models ‘./Datastore/Models/ ‘ directory. The models are saved with
the names ‘JaccHash_16.pkl ‘ for a hash code length of 16, ‘JaccHash_32.pkl ‘
for a hash code length of 32, ‘JaccHash_48.pkl ‘ for a hash code length of 48,
and ‘JaccHash_64.pkl ‘ for a hash code length of 64. Once the trained models
are available, the inference results can be reproduced by running ‘evaluation.py ‘
with the ‘gallery ‘ and ‘query ‘ folders by given specific hash code length. Ensure
that all data paths are correctly linked to the code.
For Table 4 (main paper), the notebook ’demo.ipynb’ can be used.

6 Experimental Analysis

In this section, we present an analysis of the impact of both employed loss
functions through loss analysis and an ablation study.

Table 2: Performance of proposed method with K = 48 for different values of
λ1, λ2.

λ1 λ2 nDCG@100 ACG@100 wMAP

0.5 1.0 0.6378 0.3941 0.4661
1.0 1.5 0.6426 0.4028 0.4767
1.5 2.0 0.6388 0.3973 0.4671
2.0 2.5 0.6376 0.3938 0.4651
2.5 3.0 0.6408 0.3998 0.4753
3.0 3.5 0.6374 0.3937 0.4643
3.5 4.0 0.6373 0.3948 0.4650
4.0 4.5 0.6403 0.3984 0.4691
4.5 5.0 0.6367 0.3928 0.4615

6.1 Hyperparameter and loss analysis

During training, two scaling hyperparameters, λ1 and λ2, are employed to
control the contributions of AHDL and PMCL, respectively. The results for
different combinations of λ1 and λ2 are presented in Table 2, showing how these
hyperparameters impact the model’s performance. The training loss curves for
both AHDL and PMCL are depicted in Figure 1, illustrating how the losses
evolve over the course of 200 epochs. These curves provide insight into the
4 https://iitkgpacin-my.sharepoint.com/:f:/g/personal/asimmanna17_kgpian_
iitkgp_ac_in/EnpMHJhxq21IofZky0V_gTYBbSkzb0r_aDBi6c_A-0E6ug?e=ilrbxm

https://iitkgpacin-my.sharepoint.com/:f:/g/personal/asimmanna17_kgpian_iitkgp_ac_in/EnpMHJhxq21IofZky0V_gTYBbSkzb0r_aDBi6c_A-0E6ug?e=ilrbxm
https://iitkgpacin-my.sharepoint.com/:f:/g/personal/asimmanna17_kgpian_iitkgp_ac_in/EnpMHJhxq21IofZky0V_gTYBbSkzb0r_aDBi6c_A-0E6ug?e=ilrbxm

JaccHash 7

model’s convergence behavior and the stability of the training process for each
loss function. Additionally, the impact of these loss functions is further explored
through an ablation study, with the results summarized in Table 3. This study
highlights the individual contributions of each loss function, providing a clearer
understanding of their roles in the overall performance of the model.

(a) AHDL (b) PMCL

Fig. 1: The training loss progression over 200 epochs for both losses.

Table 3: Ablation study for K = 48.
Employed loss nDCG@100 ACG@100 wMAP

AHDL 0.6083 0.3322 0.3954
AHDL + PMCL 0.6426 0.4028 0.4767

7 Limitation

The Hamming distance (HD) between any pair of hashes ranges from 0 to K.
Given that 0 ≤ n

(2)
ij ≤ n

(1)
ij ≤ L, the number of possible values for n

(2)
ij is

(n
(1)
ij +1). Approximately (n

(1)
ij +1) equidistant points are chosen from the interval

[0,K] using the floor function. These HD values are then stored in a descending

order list, denoted as L
(n

(1)
ij)

HD (hi,hj) as shown in line 10 of Alogorithm 1. As
the number of labels, L, increases, n(1)

ij can also increase, which means that the

spacing between two points in L
(n

(1)
ij)

HD (hi,hj) becomes smaller. For large values
of L, consecutive points in the list become very close to each other, making it
difficult for the model to distinguish between the true HD values corresponding

to different values of
n
(2)
ij

n
(1)
ij

.

8 A. Manna et al.

8 Conclusion

In this companion paper, we outline and discuss the motivation behind the
challenges of multi-label medical image retrieval and the design of a one-to-one
mapping between HD and JSC. We provide details on training, implementation
guidelines, and analyses of loss and parameters, all of which contribute
to enhancing reproducibility. The code for this study is publicly available,
benefiting the medical image retrieval research community. Lastly, we address
the limitations of our work and outline our plans to address these limitations
and propose solutions in future research.

References

1. Bag, S., Kumar, S.K., Tiwari, M.K.: An efficient recommendation generation using
relevant jaccard similarity. Inf. Sciences 483, 53–64 (2019)

2. Guo, X., Duan, J., Gichoya, J., Trivedi, H., Purkayastha, S., Sharma, A., Banerjee,
I.: Multi-label medical image retrieval via learning multi-class similarity. Available
at SSRN 4149616 (2022)

3. Hou, D., Zhao, Z., Hu, S.: Multi-label learning with visual-semantic embedded
knowledge graph for diagnosis of radiology imaging. IEEE Access 9, 15720–15730
(2021)

4. Luo, X., Wang, H., Wu, D., Chen, C., Deng, M., Huang, J., Hua, X.S.: A survey on
deep hashing methods. ACM Trans. Knowl. Discovery Data 17(1), 1–50 (2023)

5. Manna, A., Sista, R., Sheet, D.: Deep neural hashing for content-based medical
image retrieval: A survey (2024)

6. Rodrigues, J., Cristo, M., Colonna, J.G.: Deep hashing for multi-label image
retrieval: a survey. Artif. Intell. Rev. 53(7), 5261–5307 (2020)

7. Sorower, M.S.: A literature survey on algorithms for multi-label learning. Oregon
State University, Corvallis 18(1), 25 (2010)

8. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In: Proc. Conf. Comput.
Vision Pattern Rec. pp. 2097–2106 (2017)

	Research Reproducibility Paper: Learning Neural Networks for Multi-label Medical Image Retrieval Using Hamming Distance Fabricated with Jaccard Similarity Coefficient

