
Reducing Run-to-Run Variability in Neural
Networks: A Comparative Study of Weight

Optimization Methods

First Author1[0000−1111−2222−3333], Second Author2,3[1111−2222−3333−4444], and
Third Author3[2222−−3333−4444−5555]

No Institute Given

Abstract. Reproducibility is a crucial aspect of neural network train-
ing, but it remains challenging due to the stochastic nature of the opti-
mization during the training process. This paper examines the effects of
two weight optimization techniques: weight selection optimization and
traditional weight update optimization, on the run-to-run variability of
neural network performance. Our extensive experiments across various
convolutional layer sizes reveal that weight selection optimization reduces
variability by approximately 25% to 40%, depending on the model, com-
pared to traditional training methods. However, this reduction in vari-
ability does not lead to improved model accuracy, which remains compa-
rable to conventional training. These findings provide valuable insights
into enhancing the stability and reproducibility of neural network models
without compromising accuracy.

Keywords: Reproducibility · Determinism · Convolutional Neural Net-
works.

1 Introduction

Similar to any other scientific research, reproducibility is also a cornerstone in
deep learning. It means obtaining consistent results when experiments are re-
peated under the same conditions, such as using identical input data, compu-
tational steps, and training methods [1]. However, consistent outcomes in deep
learning are difficult to achieve due to the stochastic nature of model optimiza-
tion, which makes training models unstable. According to [7], model instability
refers to how sensitive a neural network’s performance is to tiny changes in a
single weight during training. Even a small change as little as 10−10 can cause
the model to converge to very different outcomes. These small perturbations
during training can lead to significant run-to-run variability [3]. This variability
poses challenges, especially in safety-critical fields like healthcare, autonomous
systems, and finance, where reliable performance is crucial [20]. It undermines
the reliability of results and makes it hard to distinguish genuine improvements
in model performance from random noise.

Traditional methods to reduce variability, such as training multiple copies of
a model, are computationally expensive and do not fully address the root causes



2 F. Author et al.

of instability [8]. While substantial research [2,4,13] has focused on modifying
algorithmic design choices to improve reproducibility, there is growing recogni-
tion of the need to explore optimization techniques that influence model weight
structures. These techniques are crucial as they directly affect model stability and
address the core of instability issues. However, the impact of weight optimization
methods on reducing training variability has not been thoroughly examined. This
paper addresses this gap by investigating two weight optimization techniques:
weight selection optimization and traditional weight update optimization. Un-
like traditional methods that continuously adjust weights during training, weight
selection optimization employs a strategic selection process where a subset of po-
tential weights is chosen based on a predefined criterion [19]. This approach is
inspired by the slot machine analogy, where the parameter k represents the num-
ber of weights randomly assigned to each node of the network and evaluated at
each update, allowing the model to select the optimal weights from this subset
rather than simply adjusting existing weights.

Through experiments on neural networks with varying convolutional layer
sizes, we show that weight selection optimization reduces run-to-run variability.
However, this reduction does not necessarily improve model accuracy, which
remains similar to traditional approaches. Additionally, determining the best
value of k for a particular architecture is challenging. These findings highlight
the importance of strategies that enhance stability in neural network training
without compromising performance, emphasizing the need for approaches that
maintain both consistency and accuracy.

2 Related Work

Reproducibility in deep learning is a significant challenge due to the stochastic
nature of training, which causes instability in model performance. Key sources
of nondeterminism, such as random initialization, data shuffling, and stochas-
tic regularization, contribute to unpredictable outcomes [9]. Studies by [10,6,2]
highlighted the impact of variations in random seeds and asynchronous train-
ing, emphasizing the need for standardized protocols to minimize variability.
Research by [13] showed that changes in architecture and hyperparameters af-
fect model stability but do not fully resolve the underlying instability issues. [18]
demonstrated that minor adjustments, like altering nonlinearity, can significantly
influence model performance, underscoring the complexities of achieving repro-
ducible results. Environmental factors such as software versions and tooling also
play a role; [9] and [11] highlighted the importance of controlling hardware and
software environments to reduce training variability. [4] and [5] noted that ran-
domness in training processes, including data shuffling and adversarial training,
adds layers of variability that further complicate reproducibility. [8] emphasized
the challenges posed by randomness in model comparisons, advocating for ro-
bust research practices, such as conducting multiple training runs, although this
approach is often computationally expensive. [7] critically examined model insta-
bility, showing that even minor changes in weight initialization can cause models



Title Suppressed Due to Excessive Length 3

to converge to different outcomes. They highlighted the need for optimization
techniques that specifically target weight selection and instability, which lays
the groundwork for exploring weight selection optimization. Building on these
insights, our study investigates the effects of weight optimization techniques on
reducing training variability and enhancing reproducibility in neural network
training.

3 Weight Selection Optimization Approach

Weight selection optimization was introduced in [19] as a novel method for train-
ing neural networks using fixed, randomly assigned weights instead of the tra-
ditional approach of continuously updating weights through backpropagation.
In this method, each node in the network is provided with a selection of po-
tential weights, referred to as "slots." These weights are randomly assigned and
remain fixed, allowing the network to choose the best-performing weight without
altering the weights themselves during training.

3.1 The Parameter k

Each node is associated with a parameter k, which represents the number of
random weight options available at that node. During training, backpropagation
is not used to adjust the weights but to evaluate each weight option based
on its performance. A scoring mechanism assigns a score Sk to each of the k
weights, reflecting how well each weight contributes to the network’s overall
objective. These scores are dynamically updated throughout the training process,
measuring each weight’s effectiveness under various conditions.

3.2 Selection of a Weight Through Scores Sk

Once the scores are evaluated, the network selects the highest-scoring weight
option for each node. This selection process allows the network to choose the best
weight from the available set rather than modifying the weights continuously as
in conventional training. The network structure is thus optimized by selecting
weights that best fit the training data based on their performance scores Sk ,
without directly altering the weights through gradient updates. The key idea
is that while the weights remain static, the scoring system actively guides the
network in selecting the most suitable weights.

3.3 Importance of Weight Selection

This approach minimizes the impact of stochastic factors, such as random initial-
ization and continuous weight adjustments, which often lead to variability and
instability in traditional training methods. By fixing the weight options and uti-
lizing a score-based selection system, the focus shifts from constant adjustments
to intelligently selecting optimal weights based on performance. This approach
leads to more stable and reliable neural network training outcomes.



4 F. Author et al.

4 Experiment

The experiments were designed to evaluate the effectiveness of the weight se-
lection optimization approach, focusing on its impact on model variability and
performance stability. Following the weight selection framework, the experiments
were conducted on convolutional neural networks (CNNs) with varying architec-
tures and configurations as in [19]. This section outlines the experimental setup,
including dataset, initialization methods, and training procedures.

4.1 Dataset

Experiments were mainly conducted using the CIFAR-10 dataset [12], a widely
used benchmark in image classification tasks. The dataset consists of 60,000
32x32 color images divided into 10 classes, with 50,000 images for training and
10,000 for testing. Standard data augmentation techniques such as random crop-
ping and horizontal flipping were applied during training to enhance model gen-
eralization [21].

4.2 Weight Initialization

The Slot Machine approach utilizes fixed random weights, which are initially
selected from a predefined distribution. For this study, the weights were sam-
pled from the Glorot Uniform distribution [14], a commonly used method that
initializes weights to maintain the variance of activations through the layers.
This initialization method helps in stabilizing the training process by ensuring
that the weights are neither too large nor too small, preventing vanishing or
exploding gradients [15].

4.3 Parameter k and Training Process

Each node in the network is associated with a parameter k, representing the
number of random weight options available at each node. We experimented with
k = 2, 4, 8 and 16 for each of the CNN architectures: Conv2, Conv4, and Conv6,
which represent networks with two, four, and six convolutional layers, respec-
tively. During training, backpropagation was used not to update the weights
but to evaluate the performance of each weight option. A scoring mechanism
dynamically assigned scores Sk to each of the k weights based on how well they
contributed to the network’s objective, such as minimizing the loss. The weight
with the highest score Sk at each node was selected, allowing the network to
optimize its performance by choosing the most suitable weights.

4.4 Experimental Setup

Hyperparameters: Each model was trained with a learning rate of 0.01, batch
size of 128, and momentum of 0.9. Cross-entropy loss was used as the objective
function, and training was performed for 100 epochs for each configuration of
k. No additional regularization techniques, such as dropout, were applied to
maintain the focus on evaluating the weight selection method.



Title Suppressed Due to Excessive Length 5

Software: Experiments were conducted using Python 3.8 with PyTorch 1.9.0
as the deep learning framework [16]. All experiments were run on CUDA 11.2,
leveraging GPU acceleration for efficient training.

Hardware: All experiments were performed on the HPC cluster ARA using the
SLURM workload manager. This system consists of multicore nodes for high
computational performance and offers a variety of GPU systems. For our ex-
periments, we used 2 NVIDIA Tesla V100 GPUs, supported by a 24-core Intel
CPU and 128 GB of RAM. This setup provided high computational power, en-
abling efficient execution of multiple training runs and accurate measurement of
variability.

Metrics for Variability and Performance To evaluate the effect of the weight
selection optimization, we measured two key metrics: the average accuracy and
the standard deviation of accuracy across five independent training runs for
each architecture and k configuration. The average accuracy indicated overall
performance, while the standard deviation captured the variability between runs,
highlighting how stable the model’s performance was under different conditions.

5 Results

The results of the experiments were analyzed to evaluate the impact of weight
selection optimization compared to the traditional training method, which is
represented as "learned weights" in the results. The analysis focused on differ-
ent convolutional neural network architectures, specifically Conv2, Conv4, and
Conv6. The experiments aimed to assess the test accuracy and the variabil-
ity in model performance, quantified by the standard deviation across multiple
training runs. By comparing weight selection optimization with the conventional
learned weights approach, we sought to determine how effectively each method
maintains accuracy while minimizing variability.

5.1 Test Accuracy Across Architectures

The test accuracy results for the different architectures are summarized in Figure
1. Each bar represents the test accuracy for a given architecture (LeNet, Conv2,
Conv4, and Conv6) with different values of k (2, 4, 8, and 16), as well as the
traditional learned weights approach.

The results indicate that as the complexity of the architecture increases, test
accuracy generally remains stable across different values of k. For LeNet, the
accuracy remains consistently high, close to 100%, indicating that simpler archi-
tectures derive minimal benefit from weight selection optimization. For deeper
architectures such as Conv2, Conv4, and Conv6, the accuracy achieved with
weight selection optimization is comparable to that of the traditional learned
weights approach, demonstrating that this method does not significantly com-
promise performance. However, learned weights still achieve the highest accuracy



6 F. Author et al.

Fig. 1. Shows the average test accuracy of different CNN architectures (LeNet, Conv2,
Conv4, Conv6) with varying k values (2, 4, 8, 16) and learned weights.

across all architectures. Among the weight selection configurations, k = 8 ap-
pears to be the optimal choice, offering the highest accuracy across different
architectures within the weight selection approach.

5.2 Variability in Model Performance

Figure 2 shows the standard deviation of accuracy for the Conv2, Conv4, and
Conv6 architectures with varying values of k. This metric highlights the variabil-
ity in performance across multiple training runs, with lower standard deviation
indicating more stable and reproducible results.

The results demonstrate that increasing the parameter k generally reduces
the standard deviation, leading to more consistent performance across training
runs. For Conv2, the standard deviation is highest at k = 4, indicating signif-
icant variability, while higher k values (e.g., k = 16) significantly stabilize the
training outcomes, with the accuracy standard deviation decreasing from 0.40
to 0.25, representing a 37.5% reduction. A similar trend is observed in Conv4,
where increasing k results in a reduction in standard deviation from 0.35 to 0.21,
constituting a 40% reduction.

For the deeper Conv6 architecture, variability also decreases as k increases,
though the effect is less pronounced compared to Conv2 and Conv4. The ac-
curacy standard deviation reduces from 0.39 to 0.28, amounting to a 28.2% re-
duction. This suggests that deeper networks inherently possess greater stability,
and weight selection optimization further enhances this attribute. However, the



Title Suppressed Due to Excessive Length 7

Fig. 2. shows the standard deviation of accuracy across different CNN architectures
(Conv2, Conv4, Conv6) with varying k values (2, 4, 8, 16) and learned weights, indi-
cating the variability in performance across multiple training runs.

optimal k value to minimize variability varies across architectures, underscoring
the need for architecture-specific tuning. Notably, the traditional learned weights
approach generally exhibits higher variability than the highest k values, empha-
sizing that weight selection optimization can outperform conventional training
methods in terms of stability.

6 Conclusion

The results confirm the effectiveness of the weight selection optimization ap-
proach in reducing run-to-run variability while maintaining accuracy. By se-
lecting weights based on performance scores rather than continuously adjusting
them, this method offers a robust alternative to traditional backpropagation,
especially in deeper architectures. However, there is a need to test this approach
on larger and more complex models, as increasing the k parameter value could
lead to higher memory requirements, highlighting a potential limitation of the
approach. Future work will focus on applying this method to larger architectures
and exploring techniques that enable the use of higher k values without impos-
ing significant memory constraints. These findings demonstrate the potential of
weight selection optimization as a practical strategy for enhancing reproducibil-
ity in neural network training, particularly in applications where stability and
consistent performance are crucial.



8 F. Author et al.

References

1. Albertoni, R., Colantonio, S., Skrzypczyński, P., Stefanowski, J.: Reproducibility of
machine learning: Terminology, recommendations and open issues. arXiv preprint
arXiv:2302.12691 (2023)

2. Bouthillier, X., Laurent, C., Vincent, P.: Unreproducible research is reproducible.
In: International Conference on Machine Learning, pp. 725–734. PMLR (2019)

3. Gundersen, O. E., Coakley, K., Kirkpatrick, C., Gil, Y.: Sources of irreproducibility
in machine learning: A review. arXiv preprint arXiv:2204.07610 (2022)

4. Ji, Y., Kaestner, D., Wirth, O., Wressnegger, C.: Randomness is the root of all evil:
more reliable evaluation of deep active learning. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 3943–3952 (2023)

5. Langroudi, H. F., Merkel, C., Syed, H., Kudithipudi, D.: Exploiting randomness in
deep learning algorithms. In: 2019 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8. IEEE (2019)

6. Ahmed, H., Lofstead, J.: Managing randomness to enable reproducible machine
learning. In: Proceedings of the 5th International Workshop on Practical Repro-
ducible Evaluation of Computer Systems, pp. 15–20 (2022)

7. Summers, C., Dinneen, M. J.: Nondeterminism and instability in neural network
optimization. In: International Conference on Machine Learning, pp. 9913–9922.
PMLR (2021)

8. Gundersen, O. E., Shamsaliei, S., Kjærnli, H. S., Langseth, H.: On reporting ro-
bust and trustworthy conclusions from model comparison studies involving neural
networks and randomness. In: Proceedings of the 2023 ACM Conference on Repro-
ducibility and Replicability, pp. 37–61 (2023)

9. Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., Yu, Y., Na-
gappan, N.: Problems and opportunities in training deep learning software systems:
An analysis of variance. In: Proceedings of the 35th IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 771–783 (2020)

10. Picard, D.: Torch.manual_seed (3407) is all you need: On the influence of ran-
dom seeds in deep learning architectures for computer vision. arXiv preprint
arXiv:2109.08203 (2021)

11. Zhuang, D., Zhang, X., Song, S., Hooker, S.: Randomness in neural network train-
ing: Characterizing the impact of tooling. Proceedings of Machine Learning and
Systems 4, 316–336 (2022)

12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical Report, University of Toronto (2009)

13. Madhyastha, P., Jain, R.: On model stability as a function of random seed. arXiv
preprint arXiv:1909.10447 (2019)

14. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

15. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02), 107–116 (1998)

16. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Sys-
tems 32 (2019)



Title Suppressed Due to Excessive Length 9

17. Alahmari, S. S., Goldgof, D. B., Mouton, P. R., Hall, L. O.: Challenges for the
repeatability of deep learning models. IEEE Access 8, 211860–211868 (2020)

18. Snapp, R. R., Shamir, G. I.: Synthesizing irreproducibility in deep networks. arXiv
preprint arXiv:2102.10696 (2021)

19. Aladago, M. M., Torresani, L.: Slot machines: Discovering winning combinations
of random weights in neural networks. In: International Conference on Machine
Learning, pp. 163–174. PMLR (2021)

20. Renard, F., Guedria, S., De Palma, N., Vuillerme, N.: Variability and reproducibil-
ity in deep learning for medical image segmentation. Scientific Reports 10(1), 13724
(2020)

21. Shorten, C., Khoshgoftaar, T. M.: A survey on image data augmentation for deep
learning. Journal of Big Data 6(1), 1–48 (2019)


	Reducing Run-to-Run Variability in Neural Networks: A Comparative Study of Weight Optimization Methods

