
Companion Paper: MeDiANet Implementation
and Reproducibility Details

Dipayan Dewan1[0000−0002−3314−353X], Asim Manna1[0000−0001−7617−9762],
Dyutit Mohanty2[0009−0006−6377−2923], and Debdoot

Sheet1[0000−0001−9046−149X]

1 Indian Institute of Technology Kharagpur, 721302, India
2 Manipal Institute of Technology, 576104, India

{{diiipayan93,asimmanna17}@kgpian, debdoot@ee}.iitkgp.ac.in,
dyutit.mohanty@learner.manipal.edu

Abstract. This companion paper focuses on the reproducibility of our
previously accepted work on the proposed MeDiANet architecture, a
lightweight computationally efficient architecture designed for medical
image classification. We outline key practices, including consistent ran-
dom seed initialization and mixed-precision training with TensorFlow.
By detailing these essential steps, we provide a clear framework to en-
able other researchers to replicate the findings, ensuring transparency
and reliability in deep learning experiments.

Keywords: Convolutional neural network · Computationally efficient ·
Medicla image classification

1 Introduction

Reproducibility is a critical aspect of validating deep learning research, ensuring
that results can be consistently replicated by others. This companion paper is
focused on the reproducibility of our previously accepted paper "MeDiANet: A
Lightweight Network for Large-scale Multi-disease Classification of Multi-modal
Medical Images using Dilated Convolution and Attention Network", designed for
medical image classification using the MedMNIST dataset. While the original
paper explored model performance and architectural innovations, this paper aims
to provide a detailed account of the steps taken to ensure the reproducibility of
our results.

While providing code is helpful, there are often additional considerations,
such as the effect of specific hyperparameter choices or the rationale behind
selecting particular building blocks. In this paper, we delve deeper into these as-
pects by discussing the architectural components of MeDiANet and the strategies
used for training section 2. The dataset preparation details are given in section 3.
We also explore the influence of key parameters on the model’s performance and
present the exact implementation details in section 4. Furthermore, we provide
some ablation studies to support the principle behind the network architecture
design in section 5. The reproducibility steps of the paper is given in section 6.

2 D. Dewan et al.

This paper seeks to provide a comprehensive guide for replicating the model
and its results, enabling other researchers to confidently reproduce the experi-
ments.

2 Network Architecture

The network was implemented using both PyTorch and TensorFlow. Details on
the implementations of the network building blocks are provided below.

2.1 Modified residual block(Res(·))

The network module uses pre-activated residual blocks [2], however, all activa-
tions are Mish [3] instead of ReLU. Mish is a new activation function introduced
in [3], and is smooth and non-monotonic. Mish has demonstrated improved per-
formance in various deep learning tasks by offering better generalization and
convergence compared to traditional activation functions such as ReLU[4] and
Leaky ReLU[6]. Mathemetically it can be defined as:

Mish(x) = x · tanh(softplus(x))

where softplus is defined as:

softplus(x) = ln(1 + ex)

The tensorflow implementation of above is given below

class Mish(Layer):
def __init__(self, **kwargs):

super(Mish, self).__init__(**kwargs)
def call(self, inputs):

return inputs * tf.math.tanh(tf.math.softplus(inputs))

Below the the implementation of the modified residual block employing Mish
activation layer is given. The PyTorch version of this implementation can be
found in the Github Repository 4.

def residual_block(input, input_channels=None,
output_channels=None, kernel_size=(3, 3), stride=1, drop_prob=0):

if output_channels is None:
output_channels = input.shape[-1]

if input_channels is None:
input_channels = output_channels // 4

strides = (stride, stride)
x = BatchNormalization()(input)
x = Mish()(x)
x = Conv2D(input_channels, (1, 1))(x)

Companion Paper: MeDiANet Implementation and Reproducibility Details 3

x = BatchNormalization()(x)
x = Mish()(x)
x = Conv2D(input_channels, kernel_size, padding='same',

strides=stride)(x)
x = Dropout(0.3)(x)
x = BatchNormalization()(x)
x = Mish()(x)
x = Conv2D(output_channels, (1, 1), padding='same')(x)
input = Conv2D(output_channels, (1, 1),

padding='same', strides=strides)(input)
x = Add()([x, input])
return x

2.2 Multi dilated residual block(MDiRes(·))

Each multi dilated residual block includes three parallel Conv2D of different
dilation rates with the residual connection. The TensorFlow implementation is
provided below:

def dilated_residual_block(input, input_channels=None,
output_channels=None, kernel_size=(3, 3),
dilation = [1,2,3], drop_prob=0, regularization = None):
regularizer = l2(regularization)

if output_channels is None:
output_channels = input.shape[-1]

if input_channels is None:
input_channels = output_channels // 4

x = BatchNormalization()(input)
x = Mish()(x)
x = Conv2D(input_channels, (1, 1))(x)
x = BatchNormalization()(x)
x = Mish()(x)
x1 = Conv2D(input_channels, kernel_size,

padding='same', dilation_rate=(dilation[0]),
kernel_regularizer = regularizer)(x)

x1 = Dropout(0.2)(x1)
x2 = Conv2D(input_channels, kernel_size,

padding='same', dilation_rate=(dilation[1]),
kernel_regularizer = regularizer)(x)

x2 = Dropout(0.2)(x2)
x3 = Conv2D(input_channels, kernel_size,

padding='same', dilation_rate=(dilation[2]),
kernel_regularizer = regularizer)(x)

x3 = Dropout(0.2)(x3)
x = Add()([x1, x2, x3])

4 D. Dewan et al.

x = BatchNormalization()(x)
x = Mish()(x)
x = Conv2D(output_channels, (1, 1), padding='same')(x)
input = Conv2D(output_channels, (1, 1), padding='same')(input)
x = Add()([x, input])
return x

2.3 Dilated Residual Attention Block (DiET(·))

The following algorithm can be used to construct a Dilated Residual Attention
Block, with adjustments based on the block’s depth within the network.

Algorithm 1 DiET(·) Block Creation
1: Initialize out_input← residual_block(input)

2: TRUNK BRANCH:
3: Set output_trunk← out_input
4: Apply dilated_residual_block with dilation_rate to output_trunk
5: Apply dilated_residual_block with dilation_rate to output_trunk

6: ATTENTION MASK:
7: Initialize empty list skip_connections
8: for each i from 1 to encoder_depth do
9: Apply MaxPool2D with ’same’ padding to out_input, store result in out

10: Apply dilated_residual_block with dilation_rate to out
11: Apply dilated_residual_block with dilation_rate to out, store result in

skip_connection
12: Append skip_connection to skip_connections
13: end for
14: Reverse skip_connections
15: Apply dilated_residual_block with dilation_rate to out
16: Apply dilated_residual_block with dilation_rate to out

17: DECODER:
18: for each i from 1 to encoder_depth do
19: Add out and skip_connections[i]
20: Apply dilated_residual_block with dilation_rate to out
21: Apply UpSampling2D to out
22: end for

23: Apply Conv2D(1× 1) to out with input_channels
24: Apply Conv2D(1× 1) to out with input_channels
25: Apply sigmoid activation to out
26: Add 1 to out
27: Multiply out by output_trunk (element-wise multiplication)
28: Apply residual_block to out
29: return out

Companion Paper: MeDiANet Implementation and Reproducibility Details 5

The encoder depth of the above block will change depending on the stage
of the network. As mentioned in the original paper two different variants of
MeDiANet are proposed based on the number of channels (Cin) used in the first
convolution layer of the network. The configuration for the different versions of
the proposed MeDiANet are given below:

1. MeDiANetbase69: Cin = 16, B = (1,1,1,0), R = (1,1,1,2)
2. MeDiANetbase117: Cin = 16, B = (1,2,3,0), R = (1,1,1,3)
3. MeDiANetwide69: Cin = 32, B = (1,1,1,0), R = (1,1,1,3)
4. MeDiANetwide117: Cin = 32, B = (2,2,2,0), R = (1,1,1,3)

where B denotes the number of DiET(·) and R denotes the number of Res(·) in
each stage.

3 Dataset Preparation

The dataset is constructed by aggregating publicly available datasets from vari-
ous sources to create a large-scale medical image benchmark aimed at evaluating
performance. The original sources and links are cited in the main paper. Each
image is annotated with one of 35 common thoracic pathologies. This combined
dataset includes images from four different organs captured across four different
imaging modalities. In total, it consists of 148,753 images, with 100,475 images
allocated for training, 11,164 for validation, and 37,214 for testing. Since the
images come in varying sizes, they are all resized to 3 × 224 × 224 before the
training process, and they are stored in ‘.npy‘ format. The dataset can be ac-
cessed on Zenodo [1] 3. Upon downloading and extracting the ’Dataset.zip’ file,
the images are organized into three subfolders: ’train’, ’validation’, and ’test’.

4 Training Instructions

The hyperparameters used for model training have been provided in Table 1.
These hyper-parameters remain the same for training all the four different ver-
sions of MeDiANet. We use the random search method for hyper-parameter
tuning using KerasTuner [5] for 200 trials where 10% of the training dataset
(randomly sampled) has been used for 400 epochs. Hyper-parameters of the
best trial were chosen for the final training with the full dataset.

5 Ablation Study

5.1 Ablation study for Attention Module

In 2 we show the effectiveness of DiET(·) in the proposed architecture. First,
network performance is evaluated by using MDiRes(·) block, only in the Trunk
3 https://zenodo.org/records/13923240

https://zenodo.org/records/13923240

6 D. Dewan et al.

Parameter Value
Optimizer AdamW

Optimizer Momentum β1 = 0.9, β2 = 0.999
Batch Size 192

Epochs 400
Initial Learning Rate 0.0016

Warmup Schedule Linear
Warmup Epochs 40
Warmup Target 0.0007

Learning Rate Schedule Cosine Decay
Alpha 0.042

Final Learning Rate 0.0007 * Alpha
Label Smoothing 0.1

Weight Decay 0.01

Table 1. Training Hyperparameters

branch of the DiET(·). Then we place the MDiRes(·) only in attention mask branch
of the network as mentioned in the original paper. Finally, we evaluate the model
performance by placing MDiRes(·) blocks in both Trunk branch and Attention
Mask. From the comparison study stated in Table 2, it is clear that using the
MDiRes(·) block in both branches of the DiET(·) gives the best result out of the
alternatives.

Model Accuracy (%) Parameters (M)
Trunk branch 93.75 0.36
Soft mask
branch

93.89 0.36

Trunk + Soft
mask + Dila-
tion

93.95 0.38

Table 2. Ablation study for Attention Module

5.2 Ablation study for activation function

In this study we check the performance of our proposed model with the ReLU
and Mish activation functions keeping the rest of the network unchanged. From
Table 3 it is evident that Mish activation function achieved better performance
for both MeDiANetBase and MeDiANetWide, and time to train each epoch is
also faster in comparison to ReLU.

Companion Paper: MeDiANet Implementation and Reproducibility Details 7

Model Accuracy (%) Training
time/epoch
(M)

MeDiANetbase69+ReLU 93.93 0.88
MeDiANetbase69+Mish 94.18 0.87

Table 3. Ablation study for Activation function

6 Reproducibility

We outline key reproducibility practices implemented in the original study, in-
cluding the consistent use of random seeds, detailed data preprocessing pipelines,
and TensorFlow’s mixed-precision training for computational efficiency. To en-
sure reproducibility, the random seeds for both the PyTorch and TensorFlow
models were set to 153. The Random and NumPy libraries were also set to use
a random seed of 153. To train the network, the ‘main_mdnetṗy’ script can be
used, along with arguments for the framework and model version to be trained.
The pretrained TensorFlow model is available on the GitHub4. To execute the
code, Python 3.10 is required, along with PyTorch 2.4.1, TensorFlow 2.16.1, and
NumPy 1.26.4.

7 Conclusion

This paper presents the implementation details of the proposed MeDiANet ar-
chitecture, and also provides the training details and evaluation procedure for
reproducibility purposes. This paper extensively provides details on the imple-
mentation for each of the building blocks used in the MeDiANet. It also provides
justification for choosing these blocks by providing ablation studies. Finally to
reproduce the result provided in the original paper, we provide all the technical
details that need to be followed. The hyperparameter setting has been used for
all the four variants is of of MeDiANetbase69 variant. Though all the hyperpa-
rameter setting has been provided for training the network in section 4, the paper
does not investigate the different hyper parameter setting for each of the four
varient of the proposed MeDiANet which could further improve the performance
of the network.

References

1. Dewan, D., Asim, M.: Large scale medical image dataset (Oct 2024). https://doi.
org/10.5281/zenodo.13923240, https://doi.org/10.5281/zenodo.13923240

4 https://github.com/dipayandewan94/MeDiANet

https://doi.org/10.5281/zenodo.13923240
https://doi.org/10.5281/zenodo.13923240
https://doi.org/10.5281/zenodo.13923240
https://doi.org/10.5281/zenodo.13923240
https://doi.org/10.5281/zenodo.13923240
https://github.com/dipayandewan94/MeDiANet

8 D. Dewan et al.

2. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14. pp. 630–645. Springer
(2016)

3. Misra, D.: Mish: A self regularized non-monotonic activation function. In: British
Machine Vision Conference (2020), https://api.semanticscholar.org/CorpusID:
221113156

4. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on International Con-
ference on Machine Learning. p. 807–814. ICML’10, Omnipress, Madison, WI, USA
(2010)

5. O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.:
Kerastuner. https://github.com/keras-team/keras-tuner (2019)

6. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in
convolutional network. CoRR abs/1505.00853 (2015), http://arxiv.org/abs/
1505.00853

https://api.semanticscholar.org/CorpusID:221113156
https://api.semanticscholar.org/CorpusID:221113156
https://github.com/keras-team/keras-tuner
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

	Companion Paper: MeDiANet Implementation and Reproducibility Details

