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Abstract. Smart textiles with embedded capacitive touch sensors (CTS)
hold great promise for intuitive gesture-based human-computer interac-
tion. However, recognizing complex gestures in real-time on resource-
constrained wearable devices remains a challenge. This paper presents
a novel approach using a minimalist neural network architecture tai-
lored for efficient gesture recognition on knitted CTS. We emphasize
reproducibility throughout our work by providing detailed algorithmic
implementation, the influence of key parameters on result quality, and
the integration of our source code into other frameworks. Our method
demonstrates the ability to accurately classify a variety of single- and
multi-touch gestures, including taps, swipes, and pinches, with accuracy
rates exceeding 90% on both training and testing data. The proposed
approach is well-suited for deployment on embedded devices and offers a
significant step towards enabling natural and seamless interaction with
smart textiles across diverse applications, such as healthcare, accessibil-
ity, and fashion. This work not only advances the field of smart textiles
but also contributes to the broader goals of reproducibility in pattern
recognition research, making it a valuable resource for further scientific
exploration and validation. Code is available at https://github.com/
dsbuddy/knitted-capacitive-touch-sensor-gesture-recognition
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1 Introduction

The field of smart textiles, or e-textiles, is transforming the landscape of wear-
able technology and human-computer interaction (HCI). By weaving together
traditional fabrics with advanced sensors and algorithms, these textiles create
a seamless interface between the user and the digital world. Within this field,
capacitive touch sensors (CTS) have emerged as a particularly promising tech-
nology for gesture recognition. Their high sensitivity, low profile, and ability to
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detect multiple touch points make them ideal for integrating into clothing and
accessories, enabling intuitive, hands-free control of various digital devices.

Gesture recognition is a crucial aspect of HCI, especially as wearable de-
vices become more prevalent. Accurate and reliable interpretation of gestures
not only offers a more natural and engaging way to interact with technology but
also opens up a world of possibilities across various domains. From improving
accessibility for individuals with disabilities to enhancing healthcare monitor-
ing and even revolutionizing the fashion industry, the applications of effective
gesture recognition are far-reaching.

However, mapping raw sensor data from multiple channels into meaningful
gestures is a significant challenge. The complexity of this task necessitates so-
phisticated signal processing and machine learning algorithms. Recognizing this
need, our research presents a novel approach to gesture recognition using a min-
imalistic neural network architecture. Designed with computational efficiency in
mind, this method is specifically tailored for deployment on embedded devices
with limited resources.

Our work demonstrates the reproducibility of recognizing a variety of gestures
on a knitted CTS, including taps, swipes, and pinches. Initially explored within
the context of drone control, this technology’s reproducible potential extends
far beyond, offering robust opportunities for diverse applications. From enabling
intuitive control of personal devices to facilitating gesture-based communication
for individuals with speech impairments, the impact of this research could be
transformative. In essence, this work represents a significant step forward in the
development of practical and user-friendly gesture recognition systems for smart
textiles, paving the way for a future where technology seamlessly integrates with
our everyday lives.

2 Related Work

The field of ”smart textiles” has seen significant advancements, with capaci-
tive touch sensing (CTS) emerging as a key technology for user interaction
[10,11,12,16]. Previous research in textile touch sensing has explored various
methodologies, including contact sensing, which relies on changes in inter-yarn
contact, and resistive sensing, which detects touch through changes in electrical
resistance[4,5]. While these approaches have been effective in certain contexts,
they face limitations in flexibility and integration into wearable devices [13,1].

Our work focuses on capacitive sensing due to its high sensitivity and low
profile, making it ideal for wearable applications [2,3]. Traditional capacitive
sensors often use interleaved wire matrices to detect touch location, but this
method is not easily adaptable to flexible textile substrates due to the complexity
of connections required.

To address these challenges, we utilize a capacitive touch sensing method
that leverages standard weft knitting machinery and commercially available ma-
terials. Unlike conventional methods, our approach infers touch location across a
continuous conductive substrate through current flow measurements at a limited
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(a) (b)

Fig. 1. Comparison of sensing substrate. (a) Capacitive sensing matrix. (b) Differential
capacitive sensing.

(a) A collection of touchpads
that localize touch along a
serpentine linear pathway us-
ing two electrodes.

(b) A collection of touch-
pads that localize touch
across a planar conductor
using four electrodes.

Fig. 2. Examples of knitted CTS touchpads.

number of points (see Figure 1) [14]. This strategy allows for greater flexibility
in substrate shape and size, making it well-suited for smart textiles. However, it
requires advanced signal processing to accurately decouple touch location and
induced capacitance from the data.

Furthermore, our research emphasizes reproducibility, introducing a mini-
malist neural network architecture for gesture recognition on knitted CTS. This
architecture is designed with computational efficiency in mind, making it suit-
able for deployment on resource-constrained embedded devices. Unlike exist-
ing approaches that rely on complex algorithms or large datasets [14,15], our
streamlined approach ensures that the models can be reproduced and validated
across different platforms. By integrating this innovative neural network with our
unique capacitive touch sensing method, we advance the field of smart textiles
and facilitate more intuitive and seamless human-computer interaction, while
also contributing to the broader goals of reproducibility in pattern recognition
research.
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3 Background

This paper focuses on inferring user input from a specific type of smart textile: a
capacitive touch sensor (CTS) that localizes contact across a knitted textile con-
ductor (see Figure 2) [15,14]. The CTS functions by measuring current differen-
tials at multiple points along the textile substrate, which are then converted into
voltage waveforms that encode the location and magnitude of the touch. This
design simplifies the physical connections between the conductive substrate and
external sensing electronics, providing greater flexibility in the overall design.

The operating principles of this CTS are grounded in the fundamental me-
chanics of conventional capacitive touch sensors. It employs oscillating voltage
waveforms to drive current through a resistor-capacitor (RC) network. When a
touch is applied, it induces additional capacitance, altering the charge and dis-
charge rate of the baseline capacitance. This alteration is directly correlated with
the touch’s location and magnitude [15,14]. While this approach generates de-
tailed data on sensor activity over time, translating this raw data into meaningful
user interactions poses significant challenges. These challenges are compounded
in our current planar CTS implementation, which is limited to four data chan-
nels corresponding to electrode points located at the corners of the device (see
Figure 4 that illustrates the fabrication process and current flow model of this
planar CTS.

Although the CTS approach has shown great potential in various recent ap-
plications (e.g., [9,8]), significant challenges remain in its practical implementa-
tion, particularly in mapping the CTS’s input signals to recognizable interactive
gestures such as taps, swipes, and pinches. In the following sections, we address
these challenges by introducing a minimal neural network architecture designed
to recognize interactive patterns in user behavior. We also demonstrate the real-
time application of this architecture in a virtual drone control scenario.

The recorded data undergoes processing to extract gain attenuation or phase
offset, resulting in data points that represent unique combinations of location and
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Fig. 3. CTS fabrication, circuit model, current flow, and signal measurements.



Gesture Recognition on a Capacitive Touch Sensor 5

Measured Planar Gesture Gain Data

BA

DC

BA

DC

BA

DC

Gesture

Gesture

Onset

Onset

Offset

Offset

Sample Number

Time (sec.)

G
a
in

Fig. 4. Example of a gesture performed on the touchpad and the corresponding
recorded data.

capacitance—except in no-touch scenarios where location cannot be determined.
These data points are then analyzed as a time series to identify actions performed
within a defined timing window, such as the circular swipe depicted in Figure 4,
where the data is plotted over the input duration.

4 Methodology

Implementing reproducible machine learning models on wearable devices and
other small electronics presents unique challenges due to limited power and
storage capabilities. Traditional, complex AI models are often unsuitable for
these resource-constrained environments, consuming excessive power and requir-
ing more memory than available. This generally results in slower performance
and compromised functionality, eventually leading to reproducibility issues in
the absence of higher-end hardware. To overcome these limitations, we propose
a shift towards minimalist architectures, which are streamlined and simplified AI
models designed for efficiency. Our approach ensures reproducibility due to the
minimal architectures that balance performance and efficiency, critical for repro-
ducible research in these contexts [7]. This can result in slower performance and
compromised functionality. To overcome these limitations, we propose a shift to-
wards minimalist architectures, which are streamlined and simplified AI models
designed for efficiency.

By prioritizing essential features and reducing complexity, minimalist archi-
tectures not only fit within the constraints of small devices, but also offer several
advantages. Their faster data processing enables real-time decision-making, cru-
cial for interactive applications, while their compact size frees up valuable storage
space, allowing for additional features or deployment on even smaller devices.
While sophisticated models like LSTMs and transformers have their merits, their
complexity makes them impractical for our use case. Instead, we opt for simpler
yet effective models such as fully connected networks and minimalist convo-
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lutional networks, which strike a balance between performance and efficiency.
Handling complex tasks on restricted hardware resources not only enhances ef-
ficiency but also improves reproducibility, thanks to the broader accessibility
of lower-end technology. This shift towards minimalist architectures represents
a significant advancement in the field of machine learning, paving the way for
integrating machine learning capabilities into everyday objects and ultimately
enhancing their functionality and user experience.

4.1 Machine Learning Pipeline

To ensure reproducibility in developing gesture recognition for wearable technol-
ogy, we designed a streamlined process to train and deploy compact AI models
on an embedded device. We used the Arduino Nano 33 BLE, chosen for its
low power consumption, wireless communication, and sufficient computational
capabilities for on-device machine learning.

Our approach involves collecting gesture data from a knitted capacitive touch
sensor and processing it using TensorFlow and Keras offline on a server. The AI
model, trained to recognize specific gestures, is then compressed using Tensor-
Flow Lite/TinyML to fit the microcontroller’s resource constraints. Finally, the
optimized model is integrated into the microcontroller’s firmware, enabling real-
time gesture interpretation on the wearable device (see Figure 5).

The key steps are as follows:

1. Firmware Upload: Initial firmware is uploaded to the Arduino Nano 33
BLE to enable data transmission for offline analysis.

2. Data Collection: The Arduino transmits a square wave signal through the
smart textile. The signal is modified upon touch, and the Arduino measures
the altered signal’s return time to identify the touch location and gesture.
This data is then stored for subsequent analysis.

3. Model Training & Validation: The collected data is used to train a
machine learning model, which is then validated to ensure accuracy and
reliability.

4. Model Optimization: The trained model is compressed using TensorFlow
Lite/TinyML, reducing its size and complexity for deployment on the Ar-
duino Nano 33 BLE.

5. Firmware Integration: The optimized model is integrated into the firmware,
enabling on-device gesture recognition.

6. Deployment: The final firmware, incorporating the AI model, is uploaded
to the Arduino, empowering the smart textile to detect and interpret gestures
in real-time.

Our approach leverages minimalist architectures—streamlined AI models opti-
mized for resource-limited devices like the Arduino Nano 33 BLE. This enables
real-time responsiveness while minimizing power consumption and maintaining
optimal performance.
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Fig. 5. Diagram of the embedded machine learning deployment pipeline. (1) The
firmware application code is uploaded to the FHE microprocessor to perform data
collection. (2) The data is streamed to and saved on a host PC (server). (3) The data
is used to train the selected network architecture created in TensorFlow and Keras,
which is validated and compiled into a header file using TensorFlow Lite/TinyML. (4)
The header file is merged with the firmware. (6) The application code is reuploaded
and run on the embedded hardware.

4.2 Model Architecture

The proposed model architecture is meticulously designed, with a focus on re-
producibility, to address the unique challenges of classifying both single-touch
tap actions and multi-touch touchpad gestures. We provide detailed algorith-
mic implementation and parameter settings to ensure that our approach can be
easily replicated and validated by other researchers.

Single-Touch Tap Action Classification Classifying single-touch tap actions
from wearable touchpad data is a unique challenge in biometric recognition
and human-computer interaction. The task involves identifying subtle spatio-
temporal patterns in each tap, translating raw sensor data into directional com-
mands (e.g., north, south, east, west, and diagonals). To tackle this, we use a
feedforward neural network (FNN) architecture tailored to these interactions.

The model starts with an input layer for time-series data shaped as (N, 10, 4),
where N is the number of samples, 10 represents time steps, and 4 corresponds to
raw sensor values from the CTS pad at each step (see Figure 6). This sequential
input is flattened into a one-dimensional vector for efficient processing by the
dense layers.
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Fig. 6. Diagram of Single-Touch Tap Machine Learning Model.

Two hidden dense layers, with 64 and 32 units respectively, form the core
of the FNN, extracting and transforming features using the Rectified Linear
Unit (ReLU) activation function. This non-linear activation allows the model to
learn complex relationships between input features and tap actions. The output
layer, with 8 units and a softmax activation function, generates a probability
distribution over the eight predefined classes, enabling confident classification of
each tap.

Multi-Touch Touchpad Gesture Classification Recognizing signals from a
wearable touchpad and classifying multi-touch gestures into eight distinct classes
is significantly more complex than single-touch taps. Multi-touch gestures involve
simultaneous touches and dynamic movements, requiring a model architecture
that can discern the location and timing of multiple events as well as the spatial
and temporal dynamics between touchpoints.

To manage this complexity, we employ a convolutional neural network (CNN)
architecture (see Figure 7). The input data is structured as a sequence of 50 time
steps, each with 4 features per touchpoint, representing the raw sensor values
from the CTS pad. Before entering the CNN, this data is reshaped to fit the
convolutional layers.

Fig. 7. Diagram of Multi-Touch Gesture Machine Learning Model.

The first convolutional layer uses 32 filters with a kernel size of (1, 4) to cap-
ture local dependencies along the temporal dimension. A 2D max-pooling layer
follows, reducing spatial dimensions while retaining key features. The output is
then flattened and passed through a 35% dropout layer to mitigate overfitting.
A dense layer with 64 units and ReLU activation refines the features before the
final classification layer, consisting of 8 units with a softmax activation function,
generates a probability distribution over the gesture classes.
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Classifying gestures over longer durations presents challenges due to increased
variability in speed, trajectory, or pressure, introducing noise and complicat-
ing feature extraction. This variability also raises the likelihood of ambiguity
between similar gestures. Additionally, defining precise gesture boundaries be-
comes more difficult and subjective, further complicating accurate classification
over extended timeframes.

Model Training and Optimization Both the FNN and CNN models are
trained using the categorical cross-entropy loss function, which is well-suited for
multi-class classification problems. The Adam optimizer, an adaptive learning
rate optimization algorithm, is used to efficiently update the model parame-
ters during training. However, recognizing the potential for increased complexity
and overfitting in the CNN model, a lower learning rate of 0.00005 is used for
touchpad gesture classification compared to the 0.0001 learning rate used for
single-touch tap action classification.

By tailoring the model architecture and hyperparameters to the specific char-
acteristics of each gesture type, this approach aims to achieve optimal classifi-
cation performance, facilitating accurate and reliable recognition of touch-based
interactions in the context of biometrics and human-computer interaction.

Summary In summary, the chosen architectures—FNN for single-touch tap
action classification and CNN for multi-touch gesture classification—are well-
suited to the task due to their ability to capture the essential temporal and
spatial dynamics of touch-based interactions. The FNN’s streamlined design al-
lows for efficient processing of sequential tap data, making it ideal for simpler,
more discrete gestures. In contrast, the CNN’s capability to model complex,
multi-touch gestures over extended timeframes makes it highly effective for han-
dling the intricacies of dynamic, multi-point interactions. The careful selection
of architecture and hyperparameters ensures not only optimal performance but
also facilitates reproducibility, making these models robust and reliable tools for
advancing human-computer interaction in wearable technology.

4.3 Results and Evaluation

Our proposed models demonstrate exceptional performance in classifying both
single-touch tap actions and multi-touch touchpad gestures. To enhance the
reproducibility of pattern recognition research [6], we meticulously document
the influence of key parameters on result quality and provide comprehensive
evaluation metrics to facilitate the replication and validation of our findings by
other researchers.

Single-Touch Tap Action Classification The high accuracy and F1 scores
achieved in both the training and test sets, as shown in Table 1, emphasize
the model’s ability to effectively generalize learned patterns to unseen data, a
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critical factor for real-world deployment on embedded systems. The consistent
performance across datasets suggests that the model is not overfitting, which
reduces the risk of degraded accuracy in practical applications. Moreover, the
balanced F1-scores, taking into account both precision and recall, underline the
model’s robustness even in scenarios where class distributions might be imbal-
anced. This is particularly relevant for biometric applications, where certain tap
actions might be less frequent than others.

Table 1. Performance of Single-Touch Tap Action Classification

Metric Training Set (70%) Test Set (30%)
Accuracy 93.57% 90.37%
F1-Score 0.9668 0.9494

Multi-Touch Touchpad Gesture Classification While the accuracy on the
test set for multi-touch gestures is slightly lower than that for single-touch ac-
tions, as shown in Table 2, it remains notably high, especially considering the
increased complexity and variability inherent in multi-touch interactions. The
F1-scores, although experiencing a minor decrease on the test set, still demon-
strate a commendable balance between precision and recall, highlighting the
model’s ability to effectively distinguish between different gesture types, even in
the presence of potential noise or ambiguity in the input data.

Table 2. Performance of Multi-Touch Touchpad Gesture Classification

Metric Training Set (70%) Test Set (30%)
Accuracy 92.35% 80.95%
F1-Score 0.9577 0.7955

The strong performance of both models on the test set is particularly en-
couraging in the context of embedded device deployment. It suggests that the
proposed architectures, despite their lightweight nature, can achieve robust and
accurate gesture recognition in real-time, even with the computational and mem-
ory constraints typically associated with embedded systems. This has significant
implications for the development of novel human-computer interaction modali-
ties, enabling seamless and intuitive gesture-based control of devices in a wide
range of applications, from biometrics and security to consumer electronics and
assistive technologies.

Furthermore, the high accuracy and F1-scores achieved by these models un-
derscore their potential for integration into capacitive touch sensors, which are
becoming increasingly prevalent in embedded devices due to their slim form
factor and low power consumption. By accurately recognizing a diverse set of
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gestures from capacitive touch input, these models can unlock new possibilities
for user interface design and enhance the overall user experience.

5 Example Application: Virtual Drone Control with
Single- and Multi-Touch Taps and Gestures

To showcase the practicality and effectiveness of our proposed lightweight gesture
recognition models, we developed a 3D drone flight simulator using the Unity
game engine. This immersive simulator not only serves as a proof-of-concept for
applying capacitive touch sensors (CTS) in real-world human-computer interac-
tion (HCI) scenarios but also provides a platform for evaluating the performance
and usability of our gesture recognition algorithms in a complex and dynamic
task environment.

The simulator environment is designed to be both visually engaging and
technically challenging. It consists of a virtual valley with a diverse terrain that
includes trees, a lake, and an island (see Figure 8a). Players take control of
a police drone tasked with collecting a series of gold coins scattered along a
pre-defined path within a 60-second time limit. To add a layer of realism and
complexity, the drone’s movement is governed by a physics engine that simulates
gravity, flight mechanics, and collisions with the environment. This creates a
dynamic and interactive experience that demands precise and responsive control
from the player.

Two distinct capacitive touch sensors serve as the primary input devices
for controlling the drone, demonstrating the versatility of our gesture recogni-
tion system. The first sensor is a larger 4" x 8" multi-touch pad divided into
two functional regions (see Figure 8c). The left side is dedicated to recogniz-
ing single-touch taps corresponding to cardinal directions (North, East, South,
West), while the right side recognizes single-touch taps for spatial directions
(up, down, left, right). Additionally, this sensor detects multi-touch tap combi-
nations across both sides, enabling simultaneous control of multiple degrees of
freedom, such as descending while moving forward ("forward & descend"). The
second sensor is a smaller 2" x 4" multi-touch pad that focuses on recognizing
longer-duration gestures. Specifically, it is trained to detect clockwise and coun-
terclockwise circular motions, which are mapped to toggling the drone’s engine
on and off, thereby adding another dimension to the control scheme.

The mapping of taps and gestures to the drone’s four controllable degrees of
freedom (ascent/descent, forward/backward, strafing, and rotation) is designed
to be intuitive and natural, promoting a seamless user experience. To assess the
effectiveness of the CTS-based control interface, we also implemented traditional
keyboard controls as a baseline for comparison. In user testing, participants
reported that the CTS interface was easy to learn and use, offering a level of
control and responsiveness comparable to the keyboard, even in the challenging
task of navigating the drone along the designated path.

A video demonstrating the gameplay using the CTS sensors is available in
the Supplementary Material, providing a visual illustration of the smooth and
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(a) 3D drone simulator
game controlled by CTS
sensor

(b) Bird’s eye view of the
terrain
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(d) Single-touch
gesture controller

Fig. 8. Visualization of 3D drone simulator and its various control interfaces, including
different types of touch controllers and a terrain view.

intuitive interaction facilitated by our gesture recognition system. This demon-
stration not only validates the performance of our models in a real-world appli-
cation but also underscores the potential of capacitive touch sensing and gesture
recognition to revolutionize human-computer interaction across diverse domains.
By enabling seamless and natural control of complex systems through intuitive
gestures, our technology opens new possibilities for biometric authentication,
assistive technologies, gaming, and other fields where intuitive and efficient in-
teraction is paramount.

6 Discussion

This study demonstrates the effectiveness of a minimalistic neural network archi-
tecture for real-time gesture recognition on capacitive touch sensors integrated
into smart textiles. By successfully classifying both single-touch taps and com-
plex multi-touch gestures with high accuracy (Tables 1 and 2), we have validated
the potential of this approach for resource-constrained wearable devices, aligning
with the increasing demand for efficient and seamless human-computer interac-
tion. Our results highlight the model’s ability to generalize from training data
to unseen test data, a critical factor for real-world deployment. The balanced
F1-scores across different classes indicate robustness even in scenarios with im-
balanced class distributions, a common challenge in biometrics. The successful
implementation of this lightweight architecture in a drone control simulation
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further emphasizes its practicality. The intuitive nature of the gesture-based
control suggests that this approach could revolutionize HCI in various domains,
including assistive technologies. Additionally, the integration with low-power ca-
pacitive touch sensors opens new avenues for unobtrusive wearable devices that
seamlessly capture and interpret human intent.

While promising, this research has several limitations that we detail for the
sake of ensuring reproducibility. The current gesture vocabulary is limited to
a predefined set of 10 gestures, and we outline known difficult cases and po-
tential future improvements. We provide guidance on integrating our source
code into other frameworks to encourage further exploration and validation by
the research community. Additionally, the system’s real-time responsiveness has
not been fully evaluated under varying conditions such as different fabric types,
sweat levels, or movement artifacts. The potential impact of these factors on ges-
ture recognition accuracy requires further investigation. Furthermore, the cur-
rent model lacks personalization and adaptability features, meaning it does not
adjust to individual users’ unique gesture styles or preferences.

Moving forward, we are committed to enhancing the reproducibility of our
architecture by deploying it directly onto embedded devices, exploring advanced
signal-processing algorithms to improve data quality, and investigating power
optimization strategies for real-world applications. We encourage further explo-
ration and validation by the research community through the integration of our
publicly available source code and detailed installation procedures. We aim to
expand the gesture vocabulary to include more complex and nuanced move-
ments, and to explore personalization techniques to adapt to individual users’
gesture styles and preferences. Additionally, we plan to conduct user studies to
gather feedback and assess the usability and intuitiveness of the gesture-based
interface, which will guide future iterations of the system. Future research will
also focus on refining the model architecture to further improve its performance
on complex multi-touch gestures, potentially incorporating techniques such as
recurrent neural networks or transformers to better capture temporal dependen-
cies. By addressing these challenges and continuing to push the boundaries of
gesture recognition on embedded devices, we believe this work contributes signif-
icantly to the advancement of smart textiles and their potential to revolutionize
HCI in fields like biometrics, healthcare, and beyond.
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