
Companion Paper on GolfPose: Implementation
and Reproducibility Notes

Ming-Han Lee , Yu-Chen Zhang, Kun-Ru Wu , and Yu-Chee Tseng

Department of Computer Science
National Yang Ming Chiao Tung University
No.1001 University Road, Hsinchu, Taiwan

{mhlee.cs09, yuchen2856.cs10, wufish, yctseng}@nycu.edu.tw

Abstract. This is the companion paper to the ICPR 2024 Paper “Golf-
Pose: From Regular Posture to Golf Swing Posture”. It details our Golf-
Swing dataset and GolfPose model. For the GolfSwing dataset, we in-
troduce the equipment used, data recording steps, and post-processing
methods. Regarding the GolfPose models, we discuss parameters for
fine-tuning both object detectors and 2D/3D pose models, along with
integration methods for inference. Finally, we present metrics to evaluate
the performance of 2D and 3D pose models and compare the 2D pose
model with a pre-trained model.

Keywords: Pose Estimation · Dataset Creation · Golf · Reproducibility.

1 Introduction

In our paper [6], we introduce the GolfSwing dataset, which comprises both 2D
and 3D golfer-with-club postures, as well as GolfPose models that are fine-tuned
from 2D and 3D pose models using the GolfSwing dataset. The source code is
available at 1. This companion paper focuses on the construction process of the
GolfSwing dataset, details of fine-tuning GolfPose, and evaluation metrics for the
models. Section 2 describes the five steps in creating the dataset, including used
equipment of the MoCap (motion capture) system and DV (digital video) system,
the process of coordinate transformation, and the generation of bounding boxes
and keypoints for golfer with club. Section 3 presents the implementation details
and loss functions for fine-tuning object detectors, 2D pose models, and a 2D-3D
pose lifter, as well as necessary processing steps for inference across all models.
Section 4 explains the metrics used to evaluate 2D and 3D pose models and
provides details on comparing our GolfPose-2D pose model with the pre-trained
pose model.

1 https://github.com/MingHanLee/GolfPose

https://orcid.org/0009-0000-0017-4498
https://orcid.org/0000-0002-3942-2345
https://orcid.org/0000-0001-6551-0720
https://github.com/MingHanLee/GolfPose

2 MH Lee et al.

2 Dataset

The creation process of the GolfSwing dataset includes 5 steps: environment
setup, data recording, post-processing, coordinate transformation, and creating
the dataset. As shown in Fig. 1

Environment Setup Data Recording Post-processing GolfSwing DatasetCoordinate Transformation

2D Ground Truth

3D Ground Truth

Rigid
Transformation

Extrinsic
Parameters

PCS

Intrinsic Parameters

CWCS

VWCS

CCS
Z (millimeters)

Y
(m

ill
im

et
er

s)

X (millim
eters)

Fig. 1: Workflow to derive the GolfSwing dataset.

Environment setup. GolfSwing dataset is collected concurrently by a
MoCap (motion capture) system and DV (digital video) system. The equipment
specifications are shown in Table 1. This step involves setting up the camera,
calibrating and synchronizing all Vicon cameras with the Vicon active wand, and
establishing a 3D global coordinate origin.

Table 1: Equipment specifications
MoCap System DV System

Camera Type Vicon Vero v2.2 (x6) Vicon Vero v1.3 (x3) Vicon Vue (x1) iRAYPLE A5201CU150E (x1)
Resolution 2048 x 1088 1280 x 1024 1920 x 1080 1920 x 1200
Frame Rate 100 Hz 100 Hz 100 Hz 150 Hz
Time Sync. Hardware Hardware Hardware -

Data recording. After the environment setup is complete, we start recording
golf swing movements from six volunteers acting as golfers. The MoCap system
captures the 3D trajectories of 28 markers placed on each volunteer and 5 markers
on the club, while the DV system simultaneously records a 2D video sequence.

Post-processing. Even though each golf swing was recorded by all cameras
at the same time, a marker must be captured by at least two infrared cameras
to reconstruct its 3D location. However, markers may still be occluded or lost
during a swing. Once the raw data was recorded, we had to use Vicon Nexus’s
algorithms and manual inspection to fill in the 3D location of missing markers.

Coordinate transformation. We integrate the coordinate system from
MoCap and Zhang’s camera calibration algorithm [10] to define four coordinate
systems: Vicon World Coordinate System (VWCS), Checkerboard World Coor-
dinate System (CWCS), Camera Coordinate System (CCS), Pixel Coordinate
System (PCS).

Companion Paper on GolfPose: Implementation and Reproducibility Notes 3

def rigid_transform_3D(A, B):
assert len(A) == len(B)
N = A.shape [0]
mu_A = np.mean(A, axis =0)
mu_B = np.mean(B, axis =0)

AA = A - np.tile(mu_A , (N, 1))
BB = B - np.tile(mu_B , (N, 1))
H = np.transpose(AA) * BB

U, S, Vt = np.linalg.svd(H)
R = Vt.T * U.T

if np.linalg.det(R) < 0:
print("Reflection detected")
Vt[2, :] *= -1
R = Vt.T * U.T

t = -R * mu_A.T + mu_B.T

return R, t

(ret_R , ret_T) = rigid_transform_3D(p_vicon , p_cb)

Listing 1: Compute the rigid transforma-
tion

Fig. 2: One image with pattern drawn for
camera calibration

Listing 1 defines a function that computes the rigid transformation (rotation
and translation) between VWCS and CWCS. Specifically, as shown by the yellow
arrows in Fig. 2, three markers are placed on the chessboard, and these markers
are represented as 3D points in both VWCS and CWCS. The two sets of 3D points
are utilized to compute the rigid transformation between these two coordinate
systems.
rows = 12
cols = 8
mm = 90
criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS , 30, 0.001)
objectPoints = np.zeros ((rows * cols , 3), np.float32)
objectPoints [:, :2] = np.mgrid [0 : rows * mm : mm, 0 : cols * mm : mm].T.reshape(-1, 2)

glob_image = sorted(glob.glob(os.path.join(cb_image , "*")))
for idx , path in enumerate(glob_image):

images.append(os.path.basename(path))
img = cv2.imread(path)
gray = cv2.cvtColor(img , cv2.COLOR_BGR2GRAY)

Find the chess board corners
ret , corners = cv2.findChessboardCorners(gray , (rows , cols), None)

if ret:
Refine the corner position
corners = cv2.cornerSubPix(gray , corners , (11, 11), (-1, -1), criteria)
objectPointsArray.append(objectPoints)
imgPointsArray.append(corners)
img_dict[os.path.basename(path)] = len(objectPointsArray) - 1

cv2.drawChessboardCorners(img , (rows , cols), corners , ret)
img = cv2.circle(img , tuple(corners [0]. ravel ().astype(np.int32)), 12, (0, 0, 255), -1)

else:
print(f"image {path} can’t be calibrated.")

Calibrate the camera and save the results
ret , mtx , dist , rvecs , tvecs = cv2.calibrateCamera(objectPointsArray , imgPointsArray , gray.shape [::-1], None

, None)

Listing 2: Camera calibration

Listing 2 is the code of Zhang’s camera calibration algorithm from OpenCV
[1]. As shown in Fig. 2, we use a chessboard, consisting of 13 columns and 9
rows, with each square measuring 90 mm on each side. This configuration results
in 12x8 internal corners within the board. In order to calibrate camera, a total
amount of 48 images are collected and converted to grayscale. Then, we use
cv2.findChessboardCorners to find chessboard corners and refine them. Both

4 MH Lee et al.

the object points and image points are stored. With these stored points, we
proceed with calibration by using cv2.calibrateCamera. This function returns
parameters, such as the camera matrix, distortion coefficients, rotation and trans-
lation vectors, etc. These parameters, known as external and internal parameters,
are utilized for the conversion from CWCS to CCS, and finally to PCS.

Creating Dataset Via MoCap system, the above steps determine the ground
truth of 3D keypoints. Then, through coordinate transformation, the 3D keypoints
can be projected onto each image to produce the ground truth of the 2D keypoints.
def calc_bboxes(kps_2d , shift =0):

bboxes: [x1, y1, x2 , y2] => coco bbox [x, y , width , height]
bboxes = np.stack([np.min(kps_2d[:, :, 0], axis =1), np.min(kps_2d[:, :, 1], axis =1), np.max(kps_2d[:, :,

0], axis =1), np.max(kps_2d[:, :, 1], axis =1)], axis =1)

if shift != 0:
bboxes[:, 0] = bboxes[:, 0] - shift*1
bboxes[:, 1] = bboxes[:, 1] - shift*1
bboxes[:, 2] = bboxes[:, 2] + shift *1.2
bboxes[:, 3] = bboxes[:, 3] + shift *1.2

bboxes_coco = np.stack([bboxes[:, 0], bboxes[:, 1], (bboxes[:, 2] - bboxes[:, 0]), (bboxes[:, 3] -
bboxes[:, 1])], axis =1)

area = bboxes_coco [:, 2] * bboxes_coco [:, 3]

centers = np.stack ([(bboxes[:, 0] + bboxes[:, 2]) / 2, (bboxes[:, 1] + bboxes[:, 3]) / 2], axis =1)

return bboxes_coco , area , centers

person_bboxes , person_area , golfer_centers= calc_bboxes(person_kps , shift =50)
club_bboxes , club_area , club_centers = calc_bboxes(club_kps , shift =15)

Listing 3: Caculate the bounding box

After obtaining the 2D keypoints, we use these keypoints to calculate the
bounding boxes for both the golfer and the club. In the Listing 3, we first
determine the initial bounding box by finding the minimum and maximum
coordinates of all keypoints. Then, we apply a 50-pixel shift for the golfer and a
15-pixel shift for the club to ensure that the bounding box fully covers the object.
These bounding boxes will be used to fine-tune our object detectors and pose
models.

3 Implementation

GolfPose contains an object detector, 2D pose model, and 2D-3D lifting models.
In the beginning, the object detector detects the golfer and the club; then the
2D pose model estimates their 2D keypoints. Finally, the 2D-3D lifting model is
adopted to convert 2D keypoints to 3D coordinates. Implementation details are
provided below.

3.1 Object detector

MMDetection[2] is adopted as object detector with [2] version 3.1.0. It is an open-
source toolbox based on PyTorch. The feature of MMDetection is its modular
design, which supports dataset construction as well as model invocation and
modification.
model settings
load_from = ’yolox_s_8x8_300e_coco_20211121_095711 -4592 a793.pth’
model = dict(

Companion Paper on GolfPose: Implementation and Reproducibility Notes 5

type=’YOLOX ’,
data_preprocessor=dict (...
backbone=dict (...
neck=dict (...
bbox_head=dict(

type=’YOLOXHead ’,
num_classes =2,
...),

)

dataset settings
data_root = ’GolfSwing ’
dataset_type = ’CocoDataset ’
classes = (’person ’, ’club’)

training settings
max_epochs = 30

Listing 4: Object Detector config file

Listing 4 is our object detector config file. Here, we take YOLOx from MMDe-
tection as an example. In order to detect both the golfer and the club separately,
we load the detector which is pretrained on the COCO dataset using load_from.
Then, set model.bbox_head.num_classes=2 and specify classes=(’person’,
’club’). The detector is fine-tuned for 30 epochs to detect bounding boxes
for both person and club. If we want to detect them jointly, we should set
model.bbox_head.num_classes=1 and classes=(’golfer’). Then, fine-tune
the detector for 30 epochs to identify bounding boxes for the single object
“Golfer-with-club”.

3.2 2D pose models

With the bounding boxes of the golfer and club objects, the next step is to
estimate the 2D keypoints of them. We train Golfer, Club, and Golfer-with-club
pose models separately by MMPose [3] with version 1.3.0.
dataset_info = dict(

keypoint_info=dict(
{

0: dict(name="root", id=0, color =[51, 153, 255], type="lower", swap=""),
1: dict(name="right_hip", id=1, color =[255, 128, 0], type="lower", swap="left_hip"),
2: dict(name="right_knee", id=2, color =[255 , 128, 0], type="lower", swap="left_knee"),
3: dict(name="right_foot", id=3, color =[255 , 128, 0], type="lower", swap="left_foot"),
4: dict(name="left_hip", id=4, color=[0, 255, 0], type="lower", swap="right_hip"),
5: dict(name="left_knee", id=5, color=[0, 255, 0], type="lower", swap="right_knee"),
6: dict(name="left_foot", id=6, color=[0, 255, 0], type="lower", swap="right_foot"),
7: dict(name="spine", id=7, color =[51, 153, 255], type="upper", swap=""),
8: dict(name="thorax", id=8, color =[51, 153, 255], type="upper", swap=""),
9: dict(name="neck_base", id=9, color =[51, 153, 255], type="upper", swap=""),
10: dict(name="head", id=10, color =[51, 153, 255], type="upper", swap=""),
11: dict(name="left_shoulder", id=11, color=[0, 255, 0], type="upper", swap="right_shoulder"),
12: dict(name="left_elbow", id=12, color=[0, 255, 0], type="upper", swap="right_elbow"),
13: dict(name="left_wrist", id=13, color=[0, 255, 0], type="upper", swap="right_wrist"),
14: dict(name="right_shoulder", id=14, color =[255, 128, 0], type="upper", swap="left_shoulder"),
15: dict(name="right_elbow", id=15, color =[255 , 128, 0], type="upper", swap="left_elbow"),
16: dict(name="right_wrist", id=16, color =[255 , 128, 0], type="upper", swap="left_wrist"),
17: dict(name="shaft", id=17, color =[255, 255, 255], type="upper", swap=""),
18: dict(name="hosel", id=18, color =[255, 255, 255], type="lower", swap=""),
19: dict(name="heel", id=19, color =[255, 255, 255], type="lower", swap=""),
20: dict(name="toe_down", id=20, color =[255, 255, 255], type="lower", swap=""),
21: dict(name="toe_up", id=21, color =[255, 255, 255], type="lower", swap=""),

}
),
skeleton_info=dict(

{
0: dict(link=("root", "left_hip"), id=0, color =[0, 255, 0]),
1: dict(link=("left_hip", "left_knee"), id=1, color=[0, 255, 0]),
2: dict(link=("left_knee", "left_foot"), id=2, color=[0, 255, 0]),
3: dict(link=("root", "right_hip"), id=3, color =[255, 128, 0]),
4: dict(link=("right_hip", "right_knee"), id=4, color =[255 , 128, 0]),
5: dict(link=("right_knee", "right_foot"), id=5, color =[255 , 128, 0]),
6: dict(link=("root", "spine"), id=6, color =[51, 153, 255]),
7: dict(link=("spine", "thorax"), id=7, color =[51, 153, 255]) ,
8: dict(link=("thorax", "neck_base"), id=8, color =[51, 153, 255]) ,

6 MH Lee et al.

9: dict(link=("neck_base", "head"), id=9, color =[51, 153, 255]),
10: dict(link=("thorax", "left_shoulder"), id=10, color=[0, 255, 0]),
11: dict(link=("left_shoulder", "left_elbow"), id=11, color=[0, 255, 0]),
12: dict(link=("left_elbow", "left_wrist"), id=12, color =[0, 255, 0]),
13: dict(link=("thorax", "right_shoulder"), id=13, color =[255, 128, 0]),
14: dict(link=("right_shoulder", "right_elbow"), id=14, color =[255 , 128, 0]),
15: dict(link=("right_elbow", "right_wrist"), id=15, color =[255, 128, 0]),
16: dict(link=("shaft", "hosel"), id=16, color =[255, 255, 255]),
17: dict(link=("hosel", "heel"), id=17, color =[255 , 255, 255]),
18: dict(link=("heel", "toe_down"), id=18, color =[255, 255, 255]),
19: dict(link=("toe_down", "toe_up"), id=19, color =[255, 255, 255]),

}
),
joint_weights =[1.0, 1.0, 1.2, 1.5, 1.0, 1.2, 1.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.5, 1.0, 1.2, 1.5, 1.6,

1.9, 2.0, 2.0, 2.0],
sigmas =[0.02] * 22,

)

Listing 5: GolfSwing Dataset - Golfer-with-club config file

Taking the Golfer-with-club model as an example, Listing 5 is the Golfer-
with-club dataset config file. It includes 22 keypoints, skeleton links, weights
for each keypoint, and sigma values for calculating OKS (Object Keypoints
Similarity). 17 of these keypoints are based on Human3.6M for the golfer, and 5
are custom-defined for the club: shaft, hosel, heel, toe down, and toe up. The
keypoints farther from the root have greater weight due to the faster movement
speed. The keypoints of club experience more significant speed changes and are
therefore given higher weights than the keypoints of the golfer. Additionally,
we use a Motion Capture System to record the ground truth of 3D keypoints
and convert them to 2D keypoints using camera parameters. The converted 2D
keypoints are more precise than manual annotations. Therefore, the sigma is set
to 0.02, which is stricter than used in the COCO dataset.
model settings
load_from = ’td-hm_hrnet -w48_8xb32 -210 e_coco -384x288 -c161b7de_20220915.pth’
model = dict(

type=’TopdownPoseEstimator ’,
data_preprocessor=dict (...
backbone=dict (...
head=dict(

type=’HeatmapHead ’,
in_channels =48,
out_channels =22,
deconv_out_channels=None ,
loss=dict(type=’KeypointMSELoss ’, use_target_weight=True),
decoder=codec),

)

dataset settings
dataset_type = ’CocoDataset ’
metainfo = dict(from_file=’configs/mmpose/_base_/datasets/golfswing_golfer.py’)
data_mode = ’topdown ’

training settings
train_cfg = dict(max_epochs =20, val_interval =1)

Listing 6: GolfPose-2D(GC) Model config file

In the GolfPose-2D(GC) model config file 6, we set the output channels to 22
to estimate the 22 custom keypoints of Golfer-with-club (abbreviated as GC) and
import the dataset config file 5. By loading a pre-trained model and fine-tuning
it over 20 epochs, we can estimate these keypoints for the Golfer-with-club.
from mmpose.apis import _track_by_iou , _track_by_oks ,

if args.use_oks_tracking:
_track = partial(_track_by_oks)

else:
_track = _track_by_iou

track_id , pose_est_results_last , _ = _track(data_sample , pose_est_results_last , args.tracking_thr , sigmas=
pose_estimator.dataset_meta[’sigmas ’])

Listing 7: Object tracking

Companion Paper on GolfPose: Implementation and Reproducibility Notes 7

After estimating the 2D keypoints for each frame, we utilize the MMPose
API to calculate IOU and OKS. This ensures consistent object tracking and 2D
keypoint extraction across all frames.
def merge_person_club(person_pose_est_results_list , golf_club_pose_est_results_list):

assert len(person_pose_est_results_list) == len(golf_club_pose_est_results_list), f"The quantity not
equal."

kps_all = []
bboxes_all = []
for idx , _ in enumerate(person_pose_est_results_list):

bbox
bboxes = np.stack((person_pose_est_results_list[idx][0]. get(’pred_instances ’).get(’bboxes ’),

golf_club_pose_est_results_list[idx][0]. get(’pred_instances ’).get(’bboxes ’)), axis =1)
bboxes_all.append(bboxes)

keypoints
keypoints = np.concatenate ((person_pose_est_results_list[idx][0]. get(’pred_instances ’).get(’

keypoints ’), golf_club_pose_est_results_list[idx][0]. get(’pred_instances ’).get(’keypoints ’)), axis =1)
kps_all.append(keypoints)

bboxes_all = np.concatenate(bboxes_all)
kps_all = np.concatenate(kps_all)

return bboxes_all , kps_all

Listing 8: Concate golfer and club keypoints

In the previous stage, we treated the golfer and club as a single object, named
Golfer-with-club. We estimated their 22 keypoints jointly. On the contrary, we
detect them separately and track each across all frames. We need to use the
function in Listing 8 to extract 17 keypoints from the golfer and 5 from the club,
then combine them.

3.3 2D-3D Pose Lifter

After concating these 22 keypoints of the golfer and club, we train a 2D-3D pose
lifter to convert them into 3D coordinates. We utilize MixSTE [9] as our 2D-3D
pose lifter model.
Prepare 3d data
from common.golf_dataset import GolfDataset
dataset = GolfDataset(dataset_path)

for subject in sorted(dataset.subjects ()):
for action in sorted(dataset[subject].keys()):

anim = dataset[subject][action]
if ’positions ’ in anim:

anim[’positions ’] = anim[’positions ’][:, :total_num , :] ##
positions_3d = []
for cam in anim[’cameras ’]:

pos_3d_mm = anim[’positions ’] * 1000
pos_3d_world = vicon_to_world_golf(pos_3d_mm , cam[’vicon_to_world_basis_dots ’], cam[’

square_size ’])
pos_3d_cam = world_to_camera_golf(pos_3d_world , cam[’orientation ’], cam[’translation_mm ’])
pos_3d = pos_3d_cam / 1000

pos_3d[:, 1:] -= pos_3d[:, :1] # Remove global offset , but keep trajectory in first position
positions_3d.append(pos_3d)

anim[’positions_3d ’] = positions_3d

Prepare 2d data
keypoints = np.load(’data/data_2d_ ’ + args.dataset + ’_’ + args.keypoints + ’.npz’, allow_pickle=True)
keypoints = keypoints[’positions_2d ’].item()

for subject in sorted(keypoints.keys()):
for action in sorted(keypoints[subject]):

for cam_idx , kps in enumerate(keypoints[subject][action]):
Normalize camera frame
cam = dataset.cameras ()[subject][cam_idx]
kps[..., :2] = normalize_screen_coordinates(kps[..., :2], w=cam[’res_w’], h=cam[’res_h’])
keypoints[subject][action][cam_idx] = kps

Loading model
human_num = 17
club_num = 5

8 MH Lee et al.

total_num = human_num + club_num

model_pos_train = MixSTE2(num_frame=receptive_field , num_joints=total_num , in_chans=2, embed_dim_ratio=args
.cs , depth=args.dep , num_heads=8, mlp_ratio =2., qkv_bias=True , qk_scale=None ,drop_path_rate =0.1)

Listing 9: 2D-3D pose lifter

In Listing 9, we transform the 3D keypoints ground truth based on the above
camera parameters. This transformation was executed in sequence from the
Vicon World Coordinate System (VWCS) to the Checkerboard World Coordinate
System (CWCS), and subsequently to the Camera Coordinate System (CCS).
After this operation, the global offset was eliminated from all keypoints, except the
root keypoint, by subtracting the root keypoint. Furthermore, the 2D keypoints
ground truth was normalized by mapping the original values to a range of [-1, 1]
while preserving the frame’s aspect ratio. We then import these ground truth of
2D and 3D keypoints, expand the keypoint dimensions from 17 to 22, load the
pre-trained model, and train it for 200 epochs.

Loss Functions. The loss functions of 2D-3D pose lifter model in GolfPose
are adopted from MixSTE [9]. There are two loss functions: Weight Mean Per Joint
Position Error (W-MPJPE) Lw and Mean Per Joint Velocity Error (MPJVE) Lv

[8]. Additionally, we adopt Temporal Consistency Loss (TCLoss) Lc to improve
motion smoothness [4]. The overall loss function is defined as follows:

L = Lw + λvLv + λcLc, (1)

where λv and λc are weighting factors. The W-MPJPE Lw compares the
predicted 3D keypoints with the ground truth, where the weighting vector
W = [w1, w2, ..., w(N+K)] ∈ R(N+K) is applied to keypoints:

Lw =
1

T × (N +K)

T∑
t=1

N+K∑
n=1

wn × ||ytn − gttn||22, (2)

where ||·||2 denotes the Euclidean distance. The MPJVE Lv considers the velocity
differences between predicted keypoints and the ground truth. The TCLoss Lc

evaluates the movement distances of predicted keypoints to improve smoothness
(with the same W):

Lc =
1

(T − 1)× (N +K)

T∑
t=2

N+K∑
n=1

wn × ||ytn − yt−1
n ||22. (3)

4 Evaluation

4.1 Metrics

2D Golfer, Club, Golfer-with-club Pose Models. We follow the evaluation
metric (Object Keypoint Similarity, OKS) used in COCO keypoints evaluation
[7]:

OKS =

∑
i[exp{−d2i /2s

2k2i }δ(vi > 0)]∑
i[δ(vi > 0)]

, (4)

Companion Paper on GolfPose: Implementation and Reproducibility Notes 9

where di is the Euclidean distances between each ground truth and corresponding
detected keypoint, s is the object scale, that is, the square-root of the object’s
area

√
(x2 − x1)(y2 − y1), ki is a per-keypont constant that controls falloff, vi is

the visibility flags of the ground truth (v=0: not labeled, v=1: labeled but not
visible, and v=2: labeled and visible). In our experiment, since our 2D keypoint
ground truth was obtained by projecting the 3D keypoint ground truth, we set
all ki, i = 1...(17 + 5) to 0.02. Subsequently, based on OKS, we compute the
following 6 AP and AR metrics: AP, AP50, AP75, AR, AR50, AR75.

2D-3D Lifter. We follow the metric, Mean Per Joint Position Error (MPJPE),
from Human3.6m [5] to evaluate the performance difference of the 2D-3D lifter
both before and after the fine-tuning process. For all frames of a single subject,
MPJPE is computed as

lm =
1

T × (N +K)

T∑
t=1

N+K∑
n=1

||ytn − gttn||22, (5)

where T is the number of frames for a single subject and (N +K) is the number
of golfer’s and club’s keypoints.

4.2 Comparison between GolfPose-2D and Pre-Trained Pose Models

In our main paper, we compared 2D pose estimation results for three cases: golfer-
only, club-only, and golfer-with-club. The results indicate that the golfer-with-club
outperformed both the golfer-only and club-only scenarios. We then compared
pre-trained models with golfer-only and golfer-with-club models. However, our
model was trained on our GolfSwing dataset, and the golfer’s keypoint format
follows the Human3.6M dataset, which differs from that used in the COCO
dataset. Therefore, for comparison purposes, we select 12 common keypoints
(shoulders, elbows, wrists, hips, knees, and ankles), as shown in Fig. 3.

COCO Keypoints Human3.6M Keypoints

0. nose
1. L_eye
2. R_eye
3. L_ear
4. R_ear
5. L_shoulder
6. R_shpulder
7. L_elbow
8. R_elbow

9. L_wrist
10. R_wrist
11. L_hip
12. R_hip
13. L_knee
14. R_knee
15. L_ankle
16. R_ankle

0 12
34

5

7

9
1112

10

6

14 13

1516

8

0. hip
1. R_hip
2. R_knee
3. R_foot
4. L_hip
5. L_knee
6. L_foot
7. spine
8. thorax

9. neck
10. head
11. L_shoulder
12. L_elbow
13. L_wrist
14. R_shoulder
15. R_elbow
16. R_wrist

10

9

11

12

14

15

16

7

0

41

52

3 6

13

8

Fig. 3: The keypoint format comparison between COCO and Human3.6M.

Initial set
coco_to_h36m_converter = dict(

type="KeypointConverter",
num_keypoints =17,

10 MH Lee et al.

mapping =[(12 , 1), (14, 2), (16, 3), (11, 4), (13, 5), (15, 6), (5, 11), (7, 12), (9, 13), (6, 14), (8,
15), (10, 16)],

)

H36M_partitions = dict(
limb=[1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16],

)

Build the evaluator
evaluator = Evaluator(

metrics=dict(
type="KeypointPartitionMetric",
metric=dict(

type="CocoMetric",
),
partitions=H36M_partitions ,

)
)

metainfo = parse_pose_metainfo ({’from_file ’: ’configs/mmpose/_base_/datasets/coco.py’})
metainfo["CLASSES"] = COCO_CLASSES
evaluator.dataset_meta = metainfo

Transform sigmas
from mmpose.evaluation.functional.transforms import transform_sigmas

source_sigmas = evaluator.dataset_meta[’sigmas ’]
print(source_sigmas)
target_sigmas= transform_sigmas(source_sigmas , coco_to_h36m_converter["num_keypoints"],

coco_to_h36m_converter["mapping"])
evaluator.dataset_meta[’sigmas ’] = target_sigmas
print(evaluator.dataset_meta[’sigmas ’])

Transform predictions
from mmpose.evaluation.functional.transforms import transform_pred

Load inference results
data_samples = load(pred_file)

for idx , instance in enumerate(data_samples):
source_instance = instance[’pred_instances ’]
print(source_instance)
target_instance = transform_pred(source_instance , coco_to_h36m_converter["num_keypoints"],

coco_to_h36m_converter["mapping"])
print(target_instance)

print(data_samples [0])

Call the evaluator offline evaluation
results = evaluator.offline_evaluate(data_samples , chunk_size =128)
print(results)

Listing 10: Keypoint Transformation

The code for keypoint transformation is shown in Listing 10. In the beginning,
we match the 12 common keypoint indices between the COCO dataset and our
dataset. We then choose these common keypoint for performance evaluation. Next,
we set up an evaluator and import the COCO dataset’s meta-info, which includes
the sigmas used for calculating OKS. Subsequently, we convert these sigmas
to match the relevant keypoints. Following this, we load the inference results
predicted by the pre-trained model on the GolfSwing test set and perform a
keypoint mapping transformation. Finally, using the mapped sigmas and inference
results, we proceed to the evaluation. The results are discussed in our main paper.

5 Conclusion

In this companion paper, we describe the creation of our GolfSwing dataset
using a MoCap system and DV system. The process involves environment setup,
data recording, post-processing, coordinate transformation, and dataset creation.
We generate 2D bounding boxes and keypoints by transforming 3D keypoint
coordinates, which is faster and more accurate than manual labeling. Additionally,

Companion Paper on GolfPose: Implementation and Reproducibility Notes 11

we detail the implementation and loss functions used for fine-tuning the GolfPose
model with the GolfSwing dataset. We also elaborate on the integration of various
models in sequence during inference. Finally, we discuss the metrics for evaluating
the 2D pose model and 2D-3D lifter, as well as comparing the 2D pose models
with pre-trained models.

References

1. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
2. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,

Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

3. Contributors, M.: Openmmlab pose estimation toolbox and benchmark. https:
//github.com/open-mmlab/mmpose (2020)

4. Hossain, M.R.I., Little, J.J.: Exploiting Temporal Information for 3D Human Pose
Estimation. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 68–84 (2018)

5. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large Scale
Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36(7), 1325–1339
(2013)

6. Lee, M.H., Zhang, Y.C., Wu, K.R., Tseng, Y.C.: Golfpose: From regular posture to
golf swing posture. In: 2024 27th International Conference on Pattern Recognition
(ICPR) (2024)

7. MSCOCO: MSCOCO keypoint evaluation metric. https://cocodataset.org/
#keypoints-eval (2017), accessed: 2023-07-12

8. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D Human Pose Estimation in
Video with Temporal Convolutions and Semi-supervised Training. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7753–7762 (2019)

9. Zhang, J., Tu, Z., Yang, J., Chen, Y., Yuan, J.: MixSTE: Seq2seq Mixed Spatio-
Temporal Encoder for 3D Human Pose Estimation in Video. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
13232–13242 (2022)

10. Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose
https://cocodataset.org/#keypoints-eval
https://cocodataset.org/#keypoints-eval

	Companion Paper on GolfPose: Implementation and Reproducibility Notes

