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Abstract. As a companion to the ICPR 2024 accepted paper “SalFoM:
Dynamic Saliency Prediction with Video Foundation Models”, this work
investigates how various model parameters and components impact its
performance. Since SalFoM represents the first effort of its kind in this
field, the additional experiments presented here are designed to provide
insights into the application of video foundation models for dynamic
saliency prediction. This is achieved by exploring different aspects of
the model’s architecture and the use of large video models. Additionally,
this work analyzes the impact of various strategies for defining train-
ing objectives on the model’s learning capabilities and overall perfor-
mance. The code is available at https://github.com/mr17m/SalFoM—
Video-Saliency-Prediction.

Keywords: Video Saliency Prediction · Video Foundation Model · Re-
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1 Introduction

The advent of video foundation models (VFMs) has opened up numerous op-
portunities for various video understanding tasks. However, as with any new
paradigm, it takes time for the community to become familiar with how these
models work, how they can be adopted, and how to best leverage their capabili-
ties for specific tasks that were traditionally performed using other approaches.

In particular, when it comes to utilizing VFMs for video saliency predic-
tion (VSP), there has been a lack of published research—aside from our model,
SalFoM [7]—leaving the community with limited knowledge on how such large
models can be employed. The promising performance of SalFoM has set a strong
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precedent for the design of VFM-based VSP models. With the goal of providing
the research community with the key insights needed to use large video mod-
els for VSP, this companion paper explores the influence of various parameters
and components on model performance. By modifying the original architecture
of SalFoM and exploring different components—specifically, variations of the
VFM-based feature encoder, namely UnMasked Teacher (UMT) [5], and the
3D shifted window-based Transformer modules [6] used in the feature decoding
stage—we aim to demonstrate how the vast amount of features extracted from
a video foundation model can be leveraged to enhance video saliency prediction
performance. Additionally, we will examine how different variations of the 3D
shifted window-based Transformer modules in the feature decoding stage affect
the model’s overall performance.

Moreover, since SalFoM leverages spatio-temporal transformers in the fea-
ture decoding stage, selecting the optimal number of transformer layers during
this phase is crucial. The goal is to strike a balance between maximizing per-
formance and minimizing computational overhead. Achieving this balance could
pave the way for more efficient designs of feature decoders that harness the
power of spatio-temporal transformers. By carefully adjusting the number of
layers, researchers can unlock new insights into how spatio-temporal architec-
tures can be fine-tuned for improved accuracy and resource efficiency in a variety
of applications.

In a different aspect, the objectives upon which a VFM-based dynamic
saliency prediction model is trained play a crucial role in its effectiveness. There-
fore, this study examines the performance of the SalFoM model trained with
various loss functions, utilizing the most commonly used evaluation metrics. By
exploring these different training approaches, we aim to gain insights into how
the choice of loss function impacts the model’s predictive accuracy and over-
all performance in dynamic saliency prediction tasks. These insights not only
clarify our design choices in the implementation of SalFoM but also enhance
reproducibility and serve as a best practice guide for developing future models
in the field.

We conducted all of our experiments on the DHF1K [9] dataset. We used
10% of the training set as the validation set and utilized the publicly available
validation set as the test set for evaluating model performance, as the ground
truth for the official test set is not publicly available. We adopted the same
experimental setup as SalFoM [7], utilizing the Adam optimizer [4] for gradient
descent, with an initial learning rate of 10−5.

The remainder of the paper is organized as follows: In Section 2 and its
subsections, we investigate the impact of modifying the configurations of the
decoder (including the transformer and CNN modules in the feature decoding
stages) and UMT as the feature encoder of the model. In Section 3, we analyze
the effect of using different training objectives on the model’s performance.
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2 Model Components

2.1 3D shifted window-based transformer modules

One of the key components in the feature decoding stage of SalFoM is the use of
3D shifted window-based Transformer modules in the first intermediate feature
decoding branch. These modules are designed to capture spatio-temporal fea-
tures, which are crucial for effective visual information processing. While spatio-
temporal Transformers excel at capturing complex visual data, their performance
tends to scale with the number of attention layers incorporated. However, in-
creasing the number of layers also introduces additional computational overhead
and can result in overfitting due to the large number of parameters involved.

To better understand the trade-offs associated with the number of attention
layers in the 3D shifted window-based Transformer modules within SalFoM, we
conducted a series of experiments. These experiments varied the depth of the
attention layers to evaluate their impact on model performance, computational
efficiency, and the risk of overfitting.

In SalFoM’s current decoding stage, each Transformer module consists of 6
layers. To investigate how varying the number of layers affects model perfor-
mance, we conducted a series of experiments by adjusting the number of layers
to 2, 4, 8, and 10.

The performance results for each model variant, corresponding to these differ-
ent layer configurations, are presented in Table 1. These findings provide valuable
insights into the balance between increasing model depth for enhanced feature
extraction and managing the associated computational cost and overfitting, help-
ing to inform the optimal architectural design of SalFoM.

Table 1. Evaluation of the impact of varying layer counts in SalFoM’s Transformer-
based feature decoder on the DHF1K validation set. The highest score for each metric
is indicated in bold.

Transformer Modules Depth CC NSS SIM AUC-J Size (MB) ♯Params(M)

Depth 2 0.565 3.174 0.417 0.923 1560 399.5
Depth 4 0.561 3.168 0.435 0.924 1567 401.2
Depth 6 0.565 3.299 0.436 0.928 1574 402.9
Depth 8 0.560 3.197 0.441 0.924 1580 404.6
Depth 10 0.562 3.194 0.436 0.924 1587 406.3

As shown in the table, when comparing different transformer module depths
to the main SalFoM model (which uses a depth of 6), a few patterns become
evident. The model with a depth of 2 achieves CC scores comparable to the main
SalFoM model, but falls short across all other evaluation metrics. Similarly, the
model with a depth of 4 also underperforms in every metric compared to the
reference model with a depth of 6. In the case of a model with a depth of 8,
although the SIM metric surpasses that of the reference model, the other metrics
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are lower. This improvement in SIM comes at the cost of increased model size
and a higher parameter count. Finally, for a model with a depth of 10, only the
SIM score matches that of the main SalFoM model, while all other metrics show
a decline, coupled with a further increase in model size and parameters.

It has been observed that incorporating a larger number of layers, i.e. more
than 6 layers, in the transformer modules during the decoding stage of a dynamic
saliency prediction model does not enhance overall performance and incurs sig-
nificant computational costs and may lead to diminishing performance gains,
especially if the model is already sufficiently deep for the task. On the other
hand, using a lower number of layers (less than 6 layers) in those modules re-
sults in a reduced parameter count and smaller model size, it negatively impacts
the model’s overall performance and can result in underfitting. This emphasizes
the critical importance of finding the optimal configuration to ensure the model
delivers its best performance.

As the model’s complexity grows, the time and resources needed for both
training and inference also increase. Therefore, it is important to strike a balance
between model size and computational efficiency to achieve optimal performance
without overloading computational resources.

2.2 CNN-based decoding branches

In the feature decoding stage of SalFoM, the second intermediate feature de-
coding branch—Dynamic Feature Decoding (DFD)—plays a crucial role by pre-
venting abrupt down sampling of temporal information, thereby maintaining
temporally-rich details and capturing intricate local features. As both the num-
ber of consecutive decoding layers and the approach to reducing temporal dimen-
sions significantly influence the final saliency map reconstruction [8], this section
examines the effects of incorporating an alternative type of 3D convolutional
layer—specifically, the depth-wise separable 3D convolutional layer [10]—due to
its reduced number of parameters and lower computational cost. Additionally, it
explores the impact of varying the number of 3D convolutional layers within the
second intermediate decoding branch on the overall network performance. This
is explored by either adding extra layers or reducing the number of consecutive
layers within this stage.

In one experiment, an additional 3D convolutional layer was added after each
existing layer to maintain both the feature channels and temporal dimensions
without any reduction. This setup aims to assess the effects of gradual temporal
dimension reduction and the incorporation of additional layers in the feature
decoding stage.

In a contrasting experiment, the impact of abrupt reductions in both tempo-
ral and channel dimensions was explored by halving the number of consecutive
layers. In this configuration, the first layer reduces the channels from 1024 to 256
and halves the temporal dimension. The second layer further reduces the chan-
nels from 256 to 64, again halving the temporal dimension. Finally, the third
layer decreases the channels from 64 to 16 and reduces the temporal dimen-
sion by a factor of four. This experiment not only investigates the consequences
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of sudden temporal dimension reduction but also explores the effects of sharp
decreases in channel dimensions within the feature decoding stage.

In the feature decoding stage of SalFoM, the third intermediate feature de-
coding branch (Static Feature Decoding, SFD) is designed to abstract temporal
effects and focus on spatial information. This section explores the impact of us-
ing a different type of 2D convolutional layers, as well as varying the number
of layers within this intermediate branch. In this regard, in an experiment we
employed 2D depth-wise separable convolutional layers [2] for each layer in this
branch.

On the other hand, in an experiment we aimed to explore the effect of us-
ing additional consecutive 2D convolutional layers in this branch. So, we added
additional 2D convolutional layers after the third, sixth, and ninth layers of the
original model, ensuring that the added layers did not change the number of
feature channels. In another experiment, we investigated the impact of decoding
with fewer consecutive layers in this branch by eliminating the third, sixth, and
ninth layers from the original network.

Table 2. Evaluation of the effects of different layer types and counts in SalFoM’s DFD
and SFD intermediate feature decoder branches. The highest score for each metric is
highlighted in bold. The final row of the table shows the performance of the original
version of SalFoM.

Model CC NSS SIM AUC-J Size (MB) ♯Params(M)

DFD branch:

3D depth-wise Conv Layers 0.463 2.463 0.329 0.901 1547 396.1
Extra Layers 0.559 3.188 0.433 0.923 1586 406.0
Fewer Layers 0.564 3.178 0.432 0.924 1564 400.4

SFD branch:

2D depth-wise Conv Layers 0.463 2.484 0.341 0.897 1550 396.8
Extra Layers 0.568 3.192 0.441 0.924 1576 403.5
Fewer Layers 0.560 3.185 0.428 0.924 1571 402.3

SalFoM 0.565 3.299 0.436 0.928 1574 402.9

As shown in Table 2, while employing depth-wise convolutional layers in
both the DFD and SFD branches reduces the number of model parameters, it
not only fails to improve performance but also leads to significant performance
degradation. Furthermore, increasing or decreasing the number of 3D convolu-
tional layers in the DFD branch did not enhance the overall performance of the
model. On the other hand in the case of SFD, using more 2D convolutional layers
does outperform CC and SIM; however, the improvement is modest and comes
with an increased number of parameters. Additionally, reducing the number of
layers in this branch leads to a decline in overall performance.
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2.3 Encoder layers

Given that video foundation models are typically large and contain a significant
number of parameters, investigating the effects of varying layer counts in these
models for feature encoding in dynamic saliency prediction tasks can provide
insights for developing lighter models suitable for resource-intensive applications.

To investigate this, we conducted extensive experiments using different vari-
ants of the video foundational model, UMT, as the feature encoder for our dy-
namic saliency prediction task. Specifically, we used the large version of Un-
masked Teacher (with 24 encoding layers) that processes 16 frames (UMT-L-16)
in SalFoM. By adjusting the depth of the transformer layers in UMT-L-16, we
aimed to identify the optimal configuration that balances performance and com-
putational efficiency. Additionally, we performed similar experiments with the
large version processing 8 frames (UMT-L-8) and the base version processing 8
frames (UMT-B-8) to explore the impact of input video clip length and trans-
former layer depth on the performance of video foundational models, as well as
their impact on dynamic saliency prediction.

By altering the number of encoding layers in these models, we anticipate that
a video foundational model-based feature encoder will show weak performance
when the layer count is small. This is because a shallow encoder struggles to
capture abstract patterns and high-level features, limiting its capacity to learn
hierarchical representations. On the other hand, increasing the depth of the
feature encoder is expected to improve its generalization capability and enhance
its ability to model intricate details and long-range dependencies more effectively.

Table 3. The effect of utilizing video foundation models with varying numbers of layers
as the feature encoder in the SalFoM dynamic saliency prediction model. The highest
score for each metric is shown in bold.

Model’s Encoder CC NSS SIM AUC-J Size (MB) ♯Params(M)

UMT-B-8:

Depth : 6 0.497 2.764 0.384 0.910 360.1 92.1
Depth : 12 0.527 2.935 0.400 0.915 526.2 135.0

UMT-L-8

Depth : 6 0.475 2.604 0.352 0.903 596.4 152.7
Depth : 12 0.533 2.969 0.397 0.916 891.8 228.2
Depth : 18 0.547 3.100 0.426 0.920 1187.1 303.8
Depth : 24 0.552 3.169 0.418 0.924 1482.3 379.6

UMT-L-16

Depth : 6 0.502 2.802 0.379 0.911 688 176.2
Depth : 12 0.542 3.062 0.412 0.920 983 251.8
Depth : 18 0.562 3.185 0.430 0.923 1280 327.3
Depth : 24 0.565 3.299 0.436 0.928 1574 402.9
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In our experiments, we employed all the encoders pretrained on the Kinetics
400 dataset [3] as the feature encoder of our video saliency prediction model, i.e.,
SalFoM. As illustrated in Table 3, we found that the UMT-B-8 encoder, which
operates with a depth of 6, outperforms the UMT-L-8 encoder, which has the
same depth and frame count and also it even outperforms SIM when compared
to the UMT-L-16 model that processes 16 frames. While larger video models like
UMT-L generally demonstrate superior performance on action recognition tasks,
e.g., Kinetics 400 dataset, this advantage is primarily due to their higher number
of parameters and increased depth. However, when these models are required
to function with fewer layers, their ability to utilize the extensive knowledge
acquired during pretraining diminishes.

In contrast, the performance decline seen in smaller video foundation mod-
els— such as UMT-B-8, which are pretrained with fewer parameters on large
datasets— when a number of its layers are removed for specific downstream
tasks, is less significant. These models preserve a considerable amount of the
knowledge gained during pretraining, enabling them to maintain relatively strong
performance even with reduced complexity. This indicates that while larger mod-
els may perform exceptionally well in certain scenarios, their performance bene-
fits can be diminished when some layers are removed. In contrast, smaller models
demonstrate greater adaptability to variations in architecture. The same obser-
vation is evident at a depth of 12, where the performance of the UMT-B-8 is
comparable to that of the UMT-L-8 and, notably, it even achieves a higher score
in the SIM evaluation.

As the number of layers in the UMT-L-8 increases, the VSP performance
improves correspondingly. When we examine the UMT-L-16 model, we find that
its performance surpasses that of the UMT-L-8. This indicates that processing
a greater number of frames enhances the model’s ability to capture long-range
dependencies among video frames, effectively compensating for the impact of
having a lower number of layers. This suggests a positive correlation between
model depth and performance, highlighting the importance of both the number of
frames processed and the architectural depth in enhancing the model’s ability to
understand complex temporal relationships in video data. Overall, these findings
underscore the importance of optimizing both frame count and layer depth to
achieve superior performance in video saliency tasks.

3 Model’s Training

To evaluate the effectiveness of optimization procedures for a video foundation
model-based dynamic saliency prediction, this section will explore how various
evaluation metrics influence the training process and the model’s performance.
We will analyze their impact on the overall efficacy of the dynamic saliency
prediction model to identify the most effective strategies for enhancing accuracy
and reliability in predicting dynamic saliency in videos.

While the SalFoM network is initially trained using the Correlation Coeffi-
cient (CC) and Kullback-Leibler divergence (KL) metrics, this study expands
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the evaluation by incorporating additional widely used metrics, including Nor-
malized Scanpath Saliency (NSS) and Similarity (SIM), into the loss function.
These metrics were chosen for their established effectiveness in assessing saliency
map performance.

In a series of experiments, we trained the SalFoM network using each eval-
uation metric—CC, KL, SIM, and NSS—individually. This approach enables
us to investigate the specific impact of each objective on the performance of
dynamic saliency prediction. This comprehensive examination will deepen our
understanding of the strengths and limitations of each metric, ultimately in-
forming the optimization of the SalFoM network for dynamic saliency tasks.
The definitions of each evaluation metric can be found in [1].

Table 4. Impact of different training objectives on the performance of a video foun-
dation model-based dynamic saliency prediction. The highest score for each metric is
shown in bold.

Loss Function CC NSS SIM AUC-J

CC 0.547 3.121 0.362 0.916
KL 0.564 3.192 0.442 0.925
SIM 0.310 1.948 0.234 0.806
NSS 0.556 3.139 0.375 0.918
CC+KL 0.565 3.299 0.436 0.928
CC+KL+SIM 0.557 3.141 0.437 0.921
CC+KL+SIM+NSS 0.558 3.160 0.431 0.921

It has been observed in Table 4 that using any single evaluation metric as
the loss function fails to provide a sufficient objective for training the model.
This approach negatively impacts learning, tuning, and ultimately deteriorates
the model’s overal performance. However, when both CC and KL are combined
in the loss function, the model can be optimized more effectively, leading to
improved performance. Conversely, when the number of metrics used in the loss
function increases to three or four, the training process struggles to optimize the
network across all metrics. Since each metric evaluates the model from a different
perspective, the optimization process becomes unable to meet the expectations
of all metrics simultaneously, leading to degraded model performance.

4 Conclusion

Reconducting extensive experiments to design VSP models based on video foun-
dation models, as introduced in [7], requires substantial computational resources
and is time-consuming. In this work, we aim to explore various aspects of imple-
mentation of SalFoM to facilitate further research in the field. Additionally, we
seek to provide other researchers with the opportunity to uncover the underlying
structure of the model’s different components, particularly the leveraged video
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foundation model, without the need to run additional experiments not addressed
in the original paper. This approach paves the way for both reproducibility of
results and the development of new VSP models.
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