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Abstract. This companion paper provides a detailed account of the
EMPATH framework[6], which integrates Ensemble Learning, MediaPipe
Holistic for gesture tracking, and an Attention-based Transformer model,
along with practical insights on designing an effective recognition model.
It focuses on the architecture, workflow and offers an in-depth explana-
tion of the interpolation method for handling missing hand keypoints.
Additionally, the paper highlights key limitations encountered during de-
velopment and implementation, providing valuable insights for enhancing
the reproducibility and performance of word-level sign language recogni-
tion using EMPATH.

1 Codebase

The source code is accessible at https://github.com/kreyazulh/EMPATH. he
repository includes not only the codebase but also links to pretrained models
and preprocessed files used in many of our experiments. Whether users want
to replicate our experiments or start from scratch, all essential details are pro-
vided in the repository’s README.md file. Additionally, the code is thoroughly
commented to enhance readability and understanding.

The "Model for Missing Keypoints" folder contains the interpolation model
codes layered on top of MediaPipe. Inside each named folder, there are notebooks
for both training and testing. Since preprocessing steps may vary depending on
the dataset structure, users should follow the format in the generated CSV files to
align with EMPATH’s input requirements. An example preprocessing workflow
is provided in the "preprocess" folder.

2 Architecture of the Transformer Model in EMPATH

The EMPATH framework employs a sophisticated Transformer architecture to
enhance the recognition of Bangla Sign Language (BdSL) and to generalize well
in other sign languages. This architecture efficiently processes spatial-temporal
data from gestures and movements using attention mechanisms and layered
structures.

https://github.com/kreyazulh/EMPATH
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2.1 Key Components of the Transformer Model

– Multi-Head Attention Mechanism: The core of the Transformer, allow-
ing the model to focus on different parts of the input simultaneously.
• Changing the number of attention heads alters the model’s ability to cap-

ture diverse features.
– Layer Normalization: Stabilizes and accelerates training by normalizing

outputs.
• Changing the normalization technique may affect convergence rates.

– Feed-Forward Network (FFN): Consists of two Dense layers with GELU
activation.
• Increasing the width of the FFN layers enhances capacity but increases

computational cost.
– Residual Connections: Facilitates gradient flow by adding the input to

the output of each layer.
• Removing residual connections could hinder learning by making the model

harder to optimize.
– Positional Encoding: Added to embeddings to retain sequence order in-

formation.
• Changing the positional encoding method impacts how the model under-

stands spatial relationships.
– Embedding Layers: Separate layers for different types of landmarks, han-

dling missing data with special embeddings.
• Altering the handling of missing data may lead to inaccuracies in repre-

sentation.
– Output Layer: Aggregates results from multiple Transformer blocks for

predictions.
• Changing the final output layer type affects the nature of the predictions

(e.g., regression vs. classification).

2.2 Overall Architecture Flow

The data flow through the EMPATH Transformer model is as follows:

1. Input Preparation: Pre-processed landmark data is passed into the Land-
mark Embedding layers.

2. Embedding and Positional Encoding: Separate embeddings are created
for each landmark type with positional information added.

3. Transformer Blocks: Embedded inputs are processed through multiple
Transformer blocks, refining representations iteratively.

4. Final Output: Output embeddings from the last block are aggregated to
produce predictions for sign language recognition.

This architecture captures details of gestures while maintaining a balance
between efficiency and accuracy, achieving state-of-the-art performance in sign
language recognition.
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3 EMPATH Workflow

The EMPATH framework is designed to enhance the recognition of sign language
by processing videos to extract body keypoints and training a transformer-based
model to classify gestures. Below is the workflow detailing the steps involved from
data preprocessing to final inference.

Algorithm 1 EMPATH Workflow
1: Input: Raw videos of sign language gestures
2: Output: Predicted labels for the gestures

3: Preprocessing Phase
4: 1.1 Load the raw video dataset.
5: 1.2 Split the dataset into train and test sets.
6: 1.3 Generate CSV file containing the train-test split and corresponding labels.

7: Keypoint Extraction Phase
8: 2.1 For each subset, load the corresponding videos.
9: 2.2 Use MediaPipe Holistic to extract pose, hand, and face keypoints from each

video.
10: 2.3 Apply interpolation techniques to handle missing or incomplete hand key-

points.
11: 2.4 Store the extracted keypoints in Parquet files for both train and test sets.

12: Training Phase
13: 3.1 Load the Parquet files containing keypoints for the train set.
14: 3.2 Train the transformer model using the extracted keypoints.
15: 3.4 Perform ensembling to improve model generalization.
16: 3.5 Save the trained model for inference.

17: Inference Phase
18: 4.1 Load the Parquet files for the test set.
19: 4.2 Use the trained transformer model to predict gestures from the test data.

4 Advantages of Pose Extraction

Pose extraction models such as MediaPipe[8], OpenPose[3], YOLOv8[9] and
BlazePose[1] extract only the relevant body structure keypoints (pose, hand,
and face) necessary for gesture recognition. By focusing on specific body struc-
tures, these methods eliminate background noise and irrelevant image details
typically encountered in image embedding techniques, thereby improving both
the accuracy and efficiency of the recognition process.
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5 Interpolation Model Analysis

In our work, we developed an interpolation model designed to generate miss-
ing hand keypoints that may be absent due to abrupt movements during sign
language gestures. This model aims to enhance the continuity and accuracy of
gesture recognition, particularly for longer sequences where keypoint loss can
significantly impact performance.

To evaluate the effectiveness of our interpolation model, we transitioned
from word-level assessments to sentence-level datasets. We specifically compared
our results against established datasets such as the RWTH-PHOENIX-Weather-
2014T [2] and the How2Sign [5] datasets.

5.1 Improving Keypoints

Employing the default MediaPipe Holistic model on the mentioned dataset sam-
ples, we present a more detailed breakdown of the findings in Table 1. Specifically,
PHOENIX14T exhibits 30.21% of frames with incomplete keypoints, How2Sign
shows 8.63% of frames with missing keypoints. This substantial loss of data poses
a challenge when training any skeleton-based model. Moreover, it introduces in-
consistency in the testing data, affecting the overall robustness and reliability of
the model.

Table 1: Frames with Missing Hand keypoints Using MediaPipe in Different
Dataset Sample Clips

Source Length Resolution Total Frames Missed Frames Data Loss
PHOENIX14T 7 sec 210× 260 192 58 30.21%

How2Sign 41 sec 1280× 720 996 86 8.63%

5.2 Experiments

Our objective is to demonstrate that enhancing the quality of input data leads
to superior predictions, irrespective of the model employed. The premise is that
improving data quality inherently contributes to better overall outputs which
the model previously missed (refer to Table 2). Before jumping directly on the
integration with EMPATH, or any framework for that matter, our goal is to
manually test the acceptance of this particular interpolation model to see how
well it works from the ground level. Hence we opted to test the enhancement in
real-life data quality through testing, utilizing a pretrained transformer model1
trained on the Google Isolated Sign Language dataset. This dataset, rich with
annotations, provides 250 American Sign Language words. The employed trans-
former model implements multihead attention [10] and leverages Keras [4] and
1 kaggle.com/code/markwijkhuizen/gislr-tf-data-processing-transformer-training
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Table 2: Highest Prediction Scores (Max 1) for Different Test Cases with
Mediapipe and MediaPipe + Algorithm

Ground Truth MediaPipe
Only Pred

Prediction
Score (M)

MediaPipe
+Algo Pred

Prediction
Score (M+A)

jump thankyou 0.04671 jump 0.03349
apple apple 0.07699 apple 0.09979
duck duck 0.70121 duck 0.75646
zebra police 0.07585 police 0.06805
gift refrigerator 0.02329 gift 0.02303
lamp helicopter 0.07294 lamp 0.05680
boat boat 0.04750 boat 0.04712

TFLite [7], ensuring compatibility for deployment on mobile devices. The central
evaluation metric focuses on the model’s accuracy when presented with new test
data generated in-house (see Figure 1).

Fig. 1: Sample Test Data (anonymity maintained)

Initially, the model is fed with coordinates detected solely by the Medi-
aPipe Holistic framework. Next, the model is provided with coordinates pro-
cessed through our algorithm implementation. The key criterion for assessment
involves comparing the model’s predictions in both scenarios and determining
which set of predictions aligns more closely with the ground truth, where Medi-
aPipe coupled with our algorithm yielded 7.692% more prediction accuracy
and 6.297% more confidence. (see Table 3).

Replicating ASL video samples from the American Sign Language Univer-
sity2, we introduced challenges like varying lighting, rapid hand movements, and
tilted angles, simulating real-world conditions. Noteworthy differences in predic-
tions emerged, particularly in words with swift hand movements or challenging
2 Lifeprint.com © Dr. William Vicars
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Table 3: Accuracy with Average of Highest Scores
Test Cases MediaPipe

Only Cor-
rect Pred %

Prediction
Score (M)

MediaPipe
+ Algo Cor-
rect Pred %

Prediction
Score (M+A)

52 76.923 0.16442 84.615 0.17547

data quality for MediaPipe’s landmark detection (see Figure 2 & Figure 3).
While not consistently accurate (Table 2 zebra case), the algorithm effectively
minimizes incorrect predictions, emphasizing correctness. Despite test cases had
low prediction scores due to their difficult nature, the algorithm demonstrated
a consistent impact on prediction consistency and accuracy across a diverse set
of sign language expressions (20%+ of total words). Conducting 500 iterations
for each test case provided a robust assessment.

In future works, we plan to integrate the model into live sign language recog-
nition systems to enable more accurate real-time predictions. Further improve-
ments may include expanding the model’s ability to handle complex occlusions
and exploring ways to generalize the approach across pose and face movements.

Fig. 2: Missing left hand regenerated to predict movement

(a) thankyou 0.046715081 (b) jump 0.033497258

Fig. 3: Highest prediction scores on a test video with ground truth "jump"
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6 Limitations of Development and Deployment

While the EMPATH model has demonstrated excellent results, certain limita-
tions are to be encountered during its deployment in future. Firstly, the availabil-
ity of dictionary-type training data is currently lacking, especially for languages
like Bangla. To extend the model to recognize thousands of words, it is necessary
to develop a huge training data, core model trained on large number of param-
eters and provide access through APIs. This limitation restricts the immediate
scalability of the model to handle a broad range of vocabulary in real-world
applications.

Additionally, the preprocessing of keypoints, particularly with MediaPipe,
has proven to be slow. This is largely due to the unclear documentation regarding
GPU utilization. As a result, the preprocessing pipeline currently runs on the
CPU, which significantly increases computation time.
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